mirror of
https://github.com/vale981/ray
synced 2025-03-09 12:56:46 -04:00

As we are turning redisless ray by default, dashboard doesn't need to talk with redis anymore. Instead it should talk with gcs and gcs can talk with redis.
615 lines
22 KiB
Python
615 lines
22 KiB
Python
import asyncio
|
|
import datetime
|
|
import json
|
|
import logging
|
|
import os
|
|
import socket
|
|
import subprocess
|
|
import sys
|
|
import traceback
|
|
import warnings
|
|
|
|
|
|
import ray
|
|
import ray.dashboard.modules.reporter.reporter_consts as reporter_consts
|
|
from ray.dashboard import k8s_utils
|
|
import ray.dashboard.utils as dashboard_utils
|
|
import ray.experimental.internal_kv as internal_kv
|
|
from ray._private.gcs_pubsub import GcsAioPublisher
|
|
import ray._private.services
|
|
import ray._private.utils
|
|
from ray.core.generated import reporter_pb2
|
|
from ray.core.generated import reporter_pb2_grpc
|
|
from ray.ray_constants import DEBUG_AUTOSCALING_STATUS
|
|
from ray._private.metrics_agent import MetricsAgent, Gauge, Record
|
|
from ray.util.debug import log_once
|
|
import psutil
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
enable_gpu_usage_check = True
|
|
|
|
# Are we in a K8s pod?
|
|
IN_KUBERNETES_POD = "KUBERNETES_SERVICE_HOST" in os.environ
|
|
|
|
try:
|
|
import gpustat.core as gpustat
|
|
except (ModuleNotFoundError, ImportError):
|
|
gpustat = None
|
|
if log_once("gpustat_import_warning"):
|
|
warnings.warn(
|
|
"`gpustat` package is not installed. GPU monitoring is "
|
|
"not available. To have full functionality of the "
|
|
"dashboard please install `pip install ray["
|
|
"default]`.)"
|
|
)
|
|
|
|
|
|
def recursive_asdict(o):
|
|
if isinstance(o, tuple) and hasattr(o, "_asdict"):
|
|
return recursive_asdict(o._asdict())
|
|
|
|
if isinstance(o, (tuple, list)):
|
|
L = []
|
|
for k in o:
|
|
L.append(recursive_asdict(k))
|
|
return L
|
|
|
|
if isinstance(o, dict):
|
|
D = {k: recursive_asdict(v) for k, v in o.items()}
|
|
return D
|
|
|
|
return o
|
|
|
|
|
|
def jsonify_asdict(o) -> str:
|
|
return json.dumps(dashboard_utils.to_google_style(recursive_asdict(o)))
|
|
|
|
|
|
# A list of gauges to record and export metrics.
|
|
METRICS_GAUGES = {
|
|
"node_cpu_utilization": Gauge(
|
|
"node_cpu_utilization", "Total CPU usage on a ray node", "percentage", ["ip"]
|
|
),
|
|
"node_cpu_count": Gauge(
|
|
"node_cpu_count", "Total CPUs available on a ray node", "cores", ["ip"]
|
|
),
|
|
"node_mem_used": Gauge(
|
|
"node_mem_used", "Memory usage on a ray node", "bytes", ["ip"]
|
|
),
|
|
"node_mem_available": Gauge(
|
|
"node_mem_available", "Memory available on a ray node", "bytes", ["ip"]
|
|
),
|
|
"node_mem_total": Gauge(
|
|
"node_mem_total", "Total memory on a ray node", "bytes", ["ip"]
|
|
),
|
|
"node_gpus_available": Gauge(
|
|
"node_gpus_available",
|
|
"Total GPUs available on a ray node",
|
|
"percentage",
|
|
["ip"],
|
|
),
|
|
"node_gpus_utilization": Gauge(
|
|
"node_gpus_utilization", "Total GPUs usage on a ray node", "percentage", ["ip"]
|
|
),
|
|
"node_gram_used": Gauge(
|
|
"node_gram_used", "Total GPU RAM usage on a ray node", "bytes", ["ip"]
|
|
),
|
|
"node_gram_available": Gauge(
|
|
"node_gram_available", "Total GPU RAM available on a ray node", "bytes", ["ip"]
|
|
),
|
|
"node_disk_usage": Gauge(
|
|
"node_disk_usage", "Total disk usage (bytes) on a ray node", "bytes", ["ip"]
|
|
),
|
|
"node_disk_free": Gauge(
|
|
"node_disk_free", "Total disk free (bytes) on a ray node", "bytes", ["ip"]
|
|
),
|
|
"node_disk_utilization_percentage": Gauge(
|
|
"node_disk_utilization_percentage",
|
|
"Total disk utilization (percentage) on a ray node",
|
|
"percentage",
|
|
["ip"],
|
|
),
|
|
"node_network_sent": Gauge(
|
|
"node_network_sent", "Total network sent", "bytes", ["ip"]
|
|
),
|
|
"node_network_received": Gauge(
|
|
"node_network_received", "Total network received", "bytes", ["ip"]
|
|
),
|
|
"node_network_send_speed": Gauge(
|
|
"node_network_send_speed", "Network send speed", "bytes/sec", ["ip"]
|
|
),
|
|
"node_network_receive_speed": Gauge(
|
|
"node_network_receive_speed", "Network receive speed", "bytes/sec", ["ip"]
|
|
),
|
|
"raylet_cpu": Gauge(
|
|
"raylet_cpu", "CPU usage of the raylet on a node.", "percentage", ["ip", "pid"]
|
|
),
|
|
"raylet_mem": Gauge(
|
|
"raylet_mem", "Memory usage of the raylet on a node", "mb", ["ip", "pid"]
|
|
),
|
|
"cluster_active_nodes": Gauge(
|
|
"cluster_active_nodes", "Active nodes on the cluster", "count", ["node_type"]
|
|
),
|
|
"cluster_failed_nodes": Gauge(
|
|
"cluster_failed_nodes", "Failed nodes on the cluster", "count", ["node_type"]
|
|
),
|
|
"cluster_pending_nodes": Gauge(
|
|
"cluster_pending_nodes", "Pending nodes on the cluster", "count", ["node_type"]
|
|
),
|
|
}
|
|
|
|
|
|
class ReporterAgent(
|
|
dashboard_utils.DashboardAgentModule, reporter_pb2_grpc.ReporterServiceServicer
|
|
):
|
|
"""A monitor process for monitoring Ray nodes.
|
|
|
|
Attributes:
|
|
dashboard_agent: The DashboardAgent object contains global config
|
|
"""
|
|
|
|
def __init__(self, dashboard_agent):
|
|
"""Initialize the reporter object."""
|
|
super().__init__(dashboard_agent)
|
|
if IN_KUBERNETES_POD:
|
|
# psutil does not compute this correctly when in a K8s pod.
|
|
# Use ray._private.utils instead.
|
|
cpu_count = ray._private.utils.get_num_cpus()
|
|
self._cpu_counts = (cpu_count, cpu_count)
|
|
else:
|
|
self._cpu_counts = (psutil.cpu_count(), psutil.cpu_count(logical=False))
|
|
|
|
self._ip = dashboard_agent.ip
|
|
self._is_head_node = self._ip == dashboard_agent.gcs_address.split(":")[0]
|
|
self._hostname = socket.gethostname()
|
|
self._workers = set()
|
|
self._network_stats_hist = [(0, (0.0, 0.0))] # time, (sent, recv)
|
|
self._metrics_agent = MetricsAgent(
|
|
"127.0.0.1" if self._ip == "127.0.0.1" else "",
|
|
dashboard_agent.metrics_export_port,
|
|
)
|
|
self._key = (
|
|
f"{reporter_consts.REPORTER_PREFIX}" f"{self._dashboard_agent.node_id}"
|
|
)
|
|
|
|
async def GetProfilingStats(self, request, context):
|
|
pid = request.pid
|
|
duration = request.duration
|
|
profiling_file_path = os.path.join(
|
|
ray._private.utils.get_ray_temp_dir(), f"{pid}_profiling.txt"
|
|
)
|
|
sudo = "sudo" if ray._private.utils.get_user() != "root" else ""
|
|
process = await asyncio.create_subprocess_shell(
|
|
f"{sudo} $(which py-spy) record "
|
|
f"-o {profiling_file_path} -p {pid} -d {duration} -f speedscope",
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
shell=True,
|
|
)
|
|
stdout, stderr = await process.communicate()
|
|
if process.returncode != 0:
|
|
profiling_stats = ""
|
|
else:
|
|
with open(profiling_file_path, "r") as f:
|
|
profiling_stats = f.read()
|
|
return reporter_pb2.GetProfilingStatsReply(
|
|
profiling_stats=profiling_stats, std_out=stdout, std_err=stderr
|
|
)
|
|
|
|
async def ReportOCMetrics(self, request, context):
|
|
# This function receives a GRPC containing OpenCensus (OC) metrics
|
|
# from a Ray process, then exposes those metrics to Prometheus.
|
|
try:
|
|
self._metrics_agent.record_metric_points_from_protobuf(request.metrics)
|
|
except Exception:
|
|
logger.error(traceback.format_exc())
|
|
return reporter_pb2.ReportOCMetricsReply()
|
|
|
|
@staticmethod
|
|
def _get_cpu_percent():
|
|
if IN_KUBERNETES_POD:
|
|
return k8s_utils.cpu_percent()
|
|
else:
|
|
return psutil.cpu_percent()
|
|
|
|
@staticmethod
|
|
def _get_gpu_usage():
|
|
global enable_gpu_usage_check
|
|
if gpustat is None or not enable_gpu_usage_check:
|
|
return []
|
|
gpu_utilizations = []
|
|
gpus = []
|
|
try:
|
|
gpus = gpustat.new_query().gpus
|
|
except Exception as e:
|
|
logger.debug(f"gpustat failed to retrieve GPU information: {e}")
|
|
|
|
# gpustat calls pynvml.nvmlInit()
|
|
# On machines without GPUs, this can run subprocesses that spew to
|
|
# stderr. Then with log_to_driver=True, we get log spew from every
|
|
# single raylet. To avoid this, disable the GPU usage check on
|
|
# certain errors.
|
|
# https://github.com/ray-project/ray/issues/14305
|
|
# https://github.com/ray-project/ray/pull/21686
|
|
if type(e).__name__ == "NVMLError_DriverNotLoaded":
|
|
enable_gpu_usage_check = False
|
|
|
|
for gpu in gpus:
|
|
# Note the keys in this dict have periods which throws
|
|
# off javascript so we change .s to _s
|
|
gpu_data = {"_".join(key.split(".")): val for key, val in gpu.entry.items()}
|
|
gpu_utilizations.append(gpu_data)
|
|
return gpu_utilizations
|
|
|
|
@staticmethod
|
|
def _get_boot_time():
|
|
if IN_KUBERNETES_POD:
|
|
# Return start time of container entrypoint
|
|
return psutil.Process(pid=1).create_time()
|
|
else:
|
|
return psutil.boot_time()
|
|
|
|
@staticmethod
|
|
def _get_network_stats():
|
|
ifaces = [
|
|
v for k, v in psutil.net_io_counters(pernic=True).items() if k[0] == "e"
|
|
]
|
|
|
|
sent = sum((iface.bytes_sent for iface in ifaces))
|
|
recv = sum((iface.bytes_recv for iface in ifaces))
|
|
return sent, recv
|
|
|
|
@staticmethod
|
|
def _get_mem_usage():
|
|
total = ray._private.utils.get_system_memory()
|
|
used = ray._private.utils.get_used_memory()
|
|
available = total - used
|
|
percent = round(used / total, 3) * 100
|
|
return total, available, percent, used
|
|
|
|
@staticmethod
|
|
def _get_disk_usage():
|
|
if IN_KUBERNETES_POD:
|
|
# If in a K8s pod, disable disk display by passing in dummy values.
|
|
return {
|
|
"/": psutil._common.sdiskusage(total=1, used=0, free=1, percent=0.0)
|
|
}
|
|
root = os.environ["USERPROFILE"] if sys.platform == "win32" else os.sep
|
|
tmp = ray._private.utils.get_user_temp_dir()
|
|
return {
|
|
"/": psutil.disk_usage(root),
|
|
tmp: psutil.disk_usage(tmp),
|
|
}
|
|
|
|
def _get_workers(self):
|
|
raylet_proc = self._get_raylet_proc()
|
|
if raylet_proc is None:
|
|
return []
|
|
else:
|
|
workers = set(raylet_proc.children())
|
|
self._workers.intersection_update(workers)
|
|
self._workers.update(workers)
|
|
self._workers.discard(psutil.Process())
|
|
return [
|
|
w.as_dict(
|
|
attrs=[
|
|
"pid",
|
|
"create_time",
|
|
"cpu_percent",
|
|
"cpu_times",
|
|
"cmdline",
|
|
"memory_info",
|
|
]
|
|
)
|
|
for w in self._workers
|
|
if w.status() != psutil.STATUS_ZOMBIE
|
|
]
|
|
|
|
@staticmethod
|
|
def _get_raylet_proc():
|
|
try:
|
|
curr_proc = psutil.Process()
|
|
# Here, parent is always raylet because the
|
|
# dashboard agent is a child of the raylet process.
|
|
parent = curr_proc.parent()
|
|
if parent is not None:
|
|
if parent.pid == 1:
|
|
return None
|
|
if parent.status() == psutil.STATUS_ZOMBIE:
|
|
return None
|
|
return parent
|
|
except (psutil.AccessDenied, ProcessLookupError):
|
|
pass
|
|
return None
|
|
|
|
def _get_raylet(self):
|
|
raylet_proc = self._get_raylet_proc()
|
|
if raylet_proc is None:
|
|
return {}
|
|
else:
|
|
return raylet_proc.as_dict(
|
|
attrs=[
|
|
"pid",
|
|
"create_time",
|
|
"cpu_percent",
|
|
"cpu_times",
|
|
"cmdline",
|
|
"memory_info",
|
|
]
|
|
)
|
|
|
|
def _get_load_avg(self):
|
|
if sys.platform == "win32":
|
|
cpu_percent = psutil.cpu_percent()
|
|
load = (cpu_percent, cpu_percent, cpu_percent)
|
|
else:
|
|
load = os.getloadavg()
|
|
per_cpu_load = tuple((round(x / self._cpu_counts[0], 2) for x in load))
|
|
return load, per_cpu_load
|
|
|
|
def _get_all_stats(self):
|
|
now = dashboard_utils.to_posix_time(datetime.datetime.utcnow())
|
|
network_stats = self._get_network_stats()
|
|
|
|
self._network_stats_hist.append((now, network_stats))
|
|
self._network_stats_hist = self._network_stats_hist[-7:]
|
|
then, prev_network_stats = self._network_stats_hist[0]
|
|
prev_send, prev_recv = prev_network_stats
|
|
now_send, now_recv = network_stats
|
|
network_speed_stats = (
|
|
(now_send - prev_send) / (now - then),
|
|
(now_recv - prev_recv) / (now - then),
|
|
)
|
|
return {
|
|
"now": now,
|
|
"hostname": self._hostname,
|
|
"ip": self._ip,
|
|
"cpu": self._get_cpu_percent(),
|
|
"cpus": self._cpu_counts,
|
|
"mem": self._get_mem_usage(),
|
|
"workers": self._get_workers(),
|
|
"raylet": self._get_raylet(),
|
|
"bootTime": self._get_boot_time(),
|
|
"loadAvg": self._get_load_avg(),
|
|
"disk": self._get_disk_usage(),
|
|
"gpus": self._get_gpu_usage(),
|
|
"network": network_stats,
|
|
"network_speed": network_speed_stats,
|
|
# Deprecated field, should be removed with frontend.
|
|
"cmdline": self._get_raylet().get("cmdline", []),
|
|
}
|
|
|
|
def _record_stats(self, stats, cluster_stats):
|
|
records_reported = []
|
|
ip = stats["ip"]
|
|
|
|
# -- Instance count of cluster --
|
|
# Only report cluster stats on head node
|
|
if "autoscaler_report" in cluster_stats and self._is_head_node:
|
|
active_nodes = cluster_stats["autoscaler_report"]["active_nodes"]
|
|
for node_type, active_node_count in active_nodes.items():
|
|
records_reported.append(
|
|
Record(
|
|
gauge=METRICS_GAUGES["cluster_active_nodes"],
|
|
value=active_node_count,
|
|
tags={"node_type": node_type},
|
|
)
|
|
)
|
|
|
|
failed_nodes = cluster_stats["autoscaler_report"]["failed_nodes"]
|
|
failed_nodes_dict = {}
|
|
for node_ip, node_type in failed_nodes:
|
|
if node_type in failed_nodes_dict:
|
|
failed_nodes_dict[node_type] += 1
|
|
else:
|
|
failed_nodes_dict[node_type] = 1
|
|
|
|
for node_type, failed_node_count in failed_nodes_dict.items():
|
|
records_reported.append(
|
|
Record(
|
|
gauge=METRICS_GAUGES["cluster_failed_nodes"],
|
|
value=failed_node_count,
|
|
tags={"node_type": node_type},
|
|
)
|
|
)
|
|
|
|
pending_nodes = cluster_stats["autoscaler_report"]["pending_nodes"]
|
|
pending_nodes_dict = {}
|
|
for node_ip, node_type, status_message in pending_nodes:
|
|
if node_type in pending_nodes_dict:
|
|
pending_nodes_dict[node_type] += 1
|
|
else:
|
|
pending_nodes_dict[node_type] = 1
|
|
|
|
for node_type, pending_node_count in pending_nodes_dict.items():
|
|
records_reported.append(
|
|
Record(
|
|
gauge=METRICS_GAUGES["cluster_pending_nodes"],
|
|
value=pending_node_count,
|
|
tags={"node_type": node_type},
|
|
)
|
|
)
|
|
|
|
# -- CPU per node --
|
|
cpu_usage = float(stats["cpu"])
|
|
cpu_record = Record(
|
|
gauge=METRICS_GAUGES["node_cpu_utilization"],
|
|
value=cpu_usage,
|
|
tags={"ip": ip},
|
|
)
|
|
|
|
cpu_count, _ = stats["cpus"]
|
|
cpu_count_record = Record(
|
|
gauge=METRICS_GAUGES["node_cpu_count"], value=cpu_count, tags={"ip": ip}
|
|
)
|
|
|
|
# -- Mem per node --
|
|
mem_total, mem_available, _, mem_used = stats["mem"]
|
|
mem_used_record = Record(
|
|
gauge=METRICS_GAUGES["node_mem_used"], value=mem_used, tags={"ip": ip}
|
|
)
|
|
mem_available_record = Record(
|
|
gauge=METRICS_GAUGES["node_mem_available"],
|
|
value=mem_available,
|
|
tags={"ip": ip},
|
|
)
|
|
mem_total_record = Record(
|
|
gauge=METRICS_GAUGES["node_mem_total"], value=mem_total, tags={"ip": ip}
|
|
)
|
|
|
|
# -- GPU per node --
|
|
gpus = stats["gpus"]
|
|
gpus_available = len(gpus)
|
|
|
|
if gpus_available:
|
|
gpus_utilization, gram_used, gram_total = 0, 0, 0
|
|
for gpu in gpus:
|
|
gpus_utilization += gpu["utilization_gpu"]
|
|
gram_used += gpu["memory_used"]
|
|
gram_total += gpu["memory_total"]
|
|
|
|
gram_available = gram_total - gram_used
|
|
|
|
gpus_available_record = Record(
|
|
gauge=METRICS_GAUGES["node_gpus_available"],
|
|
value=gpus_available,
|
|
tags={"ip": ip},
|
|
)
|
|
gpus_utilization_record = Record(
|
|
gauge=METRICS_GAUGES["node_gpus_utilization"],
|
|
value=gpus_utilization,
|
|
tags={"ip": ip},
|
|
)
|
|
gram_used_record = Record(
|
|
gauge=METRICS_GAUGES["node_gram_used"], value=gram_used, tags={"ip": ip}
|
|
)
|
|
gram_available_record = Record(
|
|
gauge=METRICS_GAUGES["node_gram_available"],
|
|
value=gram_available,
|
|
tags={"ip": ip},
|
|
)
|
|
records_reported.extend(
|
|
[
|
|
gpus_available_record,
|
|
gpus_utilization_record,
|
|
gram_used_record,
|
|
gram_available_record,
|
|
]
|
|
)
|
|
|
|
# -- Disk per node --
|
|
used, free = 0, 0
|
|
for entry in stats["disk"].values():
|
|
used += entry.used
|
|
free += entry.free
|
|
disk_utilization = float(used / (used + free)) * 100
|
|
disk_usage_record = Record(
|
|
gauge=METRICS_GAUGES["node_disk_usage"], value=used, tags={"ip": ip}
|
|
)
|
|
disk_free_record = Record(
|
|
gauge=METRICS_GAUGES["node_disk_free"], value=free, tags={"ip": ip}
|
|
)
|
|
disk_utilization_percentage_record = Record(
|
|
gauge=METRICS_GAUGES["node_disk_utilization_percentage"],
|
|
value=disk_utilization,
|
|
tags={"ip": ip},
|
|
)
|
|
|
|
# -- Network speed (send/receive) stats per node --
|
|
network_stats = stats["network"]
|
|
network_sent_record = Record(
|
|
gauge=METRICS_GAUGES["node_network_sent"],
|
|
value=network_stats[0],
|
|
tags={"ip": ip},
|
|
)
|
|
network_received_record = Record(
|
|
gauge=METRICS_GAUGES["node_network_received"],
|
|
value=network_stats[1],
|
|
tags={"ip": ip},
|
|
)
|
|
|
|
# -- Network speed (send/receive) per node --
|
|
network_speed_stats = stats["network_speed"]
|
|
network_send_speed_record = Record(
|
|
gauge=METRICS_GAUGES["node_network_send_speed"],
|
|
value=network_speed_stats[0],
|
|
tags={"ip": ip},
|
|
)
|
|
network_receive_speed_record = Record(
|
|
gauge=METRICS_GAUGES["node_network_receive_speed"],
|
|
value=network_speed_stats[1],
|
|
tags={"ip": ip},
|
|
)
|
|
|
|
raylet_stats = stats["raylet"]
|
|
if raylet_stats:
|
|
raylet_pid = str(raylet_stats["pid"])
|
|
# -- raylet CPU --
|
|
raylet_cpu_usage = float(raylet_stats["cpu_percent"]) * 100
|
|
raylet_cpu_record = Record(
|
|
gauge=METRICS_GAUGES["raylet_cpu"],
|
|
value=raylet_cpu_usage,
|
|
tags={"ip": ip, "pid": raylet_pid},
|
|
)
|
|
|
|
# -- raylet mem --
|
|
raylet_mem_usage = float(raylet_stats["memory_info"].rss) / 1e6
|
|
raylet_mem_record = Record(
|
|
gauge=METRICS_GAUGES["raylet_mem"],
|
|
value=raylet_mem_usage,
|
|
tags={"ip": ip, "pid": raylet_pid},
|
|
)
|
|
records_reported.extend([raylet_cpu_record, raylet_mem_record])
|
|
|
|
records_reported.extend(
|
|
[
|
|
cpu_record,
|
|
cpu_count_record,
|
|
mem_used_record,
|
|
mem_available_record,
|
|
mem_total_record,
|
|
disk_usage_record,
|
|
disk_free_record,
|
|
disk_utilization_percentage_record,
|
|
network_sent_record,
|
|
network_received_record,
|
|
network_send_speed_record,
|
|
network_receive_speed_record,
|
|
]
|
|
)
|
|
return records_reported
|
|
|
|
async def _perform_iteration(self, publisher):
|
|
"""Get any changes to the log files and push updates to kv."""
|
|
while True:
|
|
try:
|
|
formatted_status_string = internal_kv._internal_kv_get(
|
|
DEBUG_AUTOSCALING_STATUS
|
|
)
|
|
cluster_stats = (
|
|
json.loads(formatted_status_string.decode())
|
|
if formatted_status_string
|
|
else {}
|
|
)
|
|
|
|
stats = self._get_all_stats()
|
|
records_reported = self._record_stats(stats, cluster_stats)
|
|
self._metrics_agent.record_reporter_stats(records_reported)
|
|
await publisher.publish_resource_usage(self._key, jsonify_asdict(stats))
|
|
|
|
except Exception:
|
|
logger.exception("Error publishing node physical stats.")
|
|
await asyncio.sleep(reporter_consts.REPORTER_UPDATE_INTERVAL_MS / 1000)
|
|
|
|
async def run(self, server):
|
|
reporter_pb2_grpc.add_ReporterServiceServicer_to_server(self, server)
|
|
|
|
gcs_addr = self._dashboard_agent.gcs_address
|
|
assert gcs_addr is not None
|
|
publisher = GcsAioPublisher(address=gcs_addr)
|
|
await self._perform_iteration(publisher)
|
|
|
|
@staticmethod
|
|
def is_minimal_module():
|
|
return False
|