ray/rllib/utils/exploration/random.py

85 lines
3.5 KiB
Python

from gym.spaces import Discrete, MultiDiscrete, Tuple
from typing import Union
from ray.rllib.utils.annotations import override
from ray.rllib.utils.exploration.exploration import Exploration
from ray.rllib.utils.framework import try_import_tf, try_import_torch, \
tf_function, TensorType
from ray.rllib.utils.tuple_actions import TupleActions
from ray.rllib.models.modelv2 import ModelV2
tf = try_import_tf()
torch, _ = try_import_torch()
class Random(Exploration):
"""A random action selector (deterministic/greedy for explore=False).
If explore=True, returns actions randomly from `self.action_space` (via
Space.sample()).
If explore=False, returns the greedy/max-likelihood action.
"""
def __init__(self, action_space, *, framework="tf", **kwargs):
"""Initialize a Random Exploration object.
Args:
action_space (Space): The gym action space used by the environment.
framework (Optional[str]): One of None, "tf", "torch".
"""
super().__init__(
action_space=action_space, framework=framework, **kwargs)
# Determine py_func types, depending on our action-space.
if isinstance(self.action_space, (Discrete, MultiDiscrete)) or \
(isinstance(self.action_space, Tuple) and
isinstance(self.action_space[0], (Discrete, MultiDiscrete))):
self.dtype_sample, self.dtype = (tf.int64, tf.int32)
else:
self.dtype_sample, self.dtype = (tf.float64, tf.float32)
@override(Exploration)
def get_exploration_action(self,
distribution_inputs: TensorType,
action_dist_class: type,
model: ModelV2,
timestep: Union[int, TensorType],
explore: bool = True):
# Instantiate the distribution object.
action_dist = action_dist_class(distribution_inputs, model)
if self.framework == "tf":
return self.get_tf_exploration_action_op(action_dist, explore)
else:
return self.get_torch_exploration_action(action_dist, explore)
@tf_function(tf)
def get_tf_exploration_action_op(self, action_dist, explore):
if explore:
action = tf.py_function(self.action_space.sample, [],
self.dtype_sample)
# Will be unnecessary, once we support batch/time-aware Spaces.
action = tf.expand_dims(tf.cast(action, dtype=self.dtype), 0)
else:
action = tf.cast(
action_dist.deterministic_sample(), dtype=self.dtype)
# TODO(sven): Move into (deterministic_)sample(logp=True|False)
if isinstance(action, TupleActions):
batch_size = tf.shape(action[0][0])[0]
else:
batch_size = tf.shape(action)[0]
logp = tf.zeros(shape=(batch_size, ), dtype=tf.float32)
return action, logp
def get_torch_exploration_action(self, action_dist, explore):
tensor_fn = torch.LongTensor if \
type(self.action_space) in [Discrete, MultiDiscrete] else \
torch.FloatTensor
if explore:
# Unsqueeze will be unnecessary, once we support batch/time-aware
# Spaces.
action = tensor_fn(self.action_space.sample()).unsqueeze(0)
else:
action = tensor_fn(action_dist.deterministic_sample())
logp = torch.zeros((action.size()[0], ), dtype=torch.float32)
return action, logp