ray/rllib/tests/test_eager_support.py
Sven Mika 510c850651
[RLlib] SAC add discrete action support. (#7320)
* Exploration API (+EpsilonGreedy sub-class).

* Exploration API (+EpsilonGreedy sub-class).

* Cleanup/LINT.

* Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents).

* Add `error` option to deprecation_warning().

* WIP.

* Bug fix: Get exploration-info for tf framework.
Bug fix: Properly deprecate some DQN config keys.

* WIP.

* LINT.

* WIP.

* Split PerWorkerEpsilonGreedy out of EpsilonGreedy.
Docstrings.

* Fix bug in sampler.py in case Policy has self.exploration = None

* Update rllib/agents/dqn/dqn.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Update rllib/agents/trainer.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Change requests.

* LINT

* In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set

* Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps).

* Update rllib/evaluation/worker_set.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Review fixes.

* Fix default value for DQN's exploration spec.

* LINT

* Fix recursion bug (wrong parent c'tor).

* Do not pass timestep to get_exploration_info.

* Update tf_policy.py

* Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs.

* Bug fix tf-action-dist

* DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG).

* Switch off exploration when getting action probs from off-policy-estimator's policy.

* LINT

* Fix test_checkpoint_restore.py.

* Deprecate all SAC exploration (unused) configs.

* Properly use `model.last_output()` everywhere. Instead of `model._last_output`.

* WIP.

* Take out set_epsilon from multi-agent-env test (not needed, decays anyway).

* WIP.

* Trigger re-test (flaky checkpoint-restore test).

* WIP.

* WIP.

* Add test case for deterministic action sampling in PPO.

* bug fix.

* Added deterministic test cases for different Agents.

* Fix problem with TupleActions in dynamic-tf-policy.

* Separate supported_spaces tests so they can be run separately for easier debugging.

* LINT.

* Fix autoregressive_action_dist.py test case.

* Re-test.

* Fix.

* Remove duplicate py_test rule from bazel.

* LINT.

* WIP.

* WIP.

* SAC fix.

* SAC fix.

* WIP.

* WIP.

* WIP.

* FIX 2 examples tests.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix.

* LINT.

* Renamed test file.

* WIP.

* Add unittest.main.

* Make action_dist_class mandatory.

* fix

* FIX.

* WIP.

* WIP.

* Fix.

* Fix.

* Fix explorations test case (contextlib cannot find its own nullcontext??).

* Force torch to be installed for QMIX.

* LINT.

* Fix determine_tests_to_run.py.

* Fix determine_tests_to_run.py.

* WIP

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Rename some stuff.

* Rename some stuff.

* WIP.

* update.

* WIP.

* Gumbel Softmax Dist.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP

* WIP.

* WIP.

* Hypertune.

* Hypertune.

* Hypertune.

* Lock-in.

* Cleanup.

* LINT.

* Fix.

* Update rllib/policy/eager_tf_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/agents/sac/sac_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/agents/sac/sac_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/models/tf/tf_action_dist.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/models/tf/tf_action_dist.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Fix items from review comments.

* Add dm_tree to RLlib dependencies.

* Add dm_tree to RLlib dependencies.

* Fix DQN test cases ((Torch)Categorical).

* Fix wrong pip install.

Co-authored-by: Eric Liang <ekhliang@gmail.com>
Co-authored-by: Kristian Hartikainen <kristian.hartikainen@gmail.com>
2020-03-06 10:37:12 -08:00

76 lines
1.9 KiB
Python

import unittest
import ray
from ray import tune
from ray.rllib.agents.registry import get_agent_class
def check_support(alg, config, test_trace=True):
config["eager"] = True
if alg in ["APEX_DDPG", "TD3", "DDPG", "SAC"]:
config["env"] = "Pendulum-v0"
else:
config["env"] = "CartPole-v0"
a = get_agent_class(alg)
config["log_level"] = "ERROR"
config["eager_tracing"] = False
tune.run(a, config=config, stop={"training_iteration": 1})
if test_trace:
config["eager_tracing"] = True
tune.run(a, config=config, stop={"training_iteration": 1})
class TestEagerSupport(unittest.TestCase):
def setUp(self):
ray.init(num_cpus=4)
def tearDown(self):
ray.shutdown()
def testSimpleQ(self):
check_support("SimpleQ", {"num_workers": 0, "learning_starts": 0})
def testDQN(self):
check_support("DQN", {"num_workers": 0, "learning_starts": 0})
def testA2C(self):
check_support("A2C", {"num_workers": 0})
def testA3C(self):
check_support("A3C", {"num_workers": 1})
def testPG(self):
check_support("PG", {"num_workers": 0})
def testPPO(self):
check_support("PPO", {"num_workers": 0})
def testAPPO(self):
check_support("APPO", {"num_workers": 1, "num_gpus": 0})
def testIMPALA(self):
check_support("IMPALA", {"num_workers": 1, "num_gpus": 0})
def testAPEX_DQN(self):
check_support(
"APEX", {
"num_workers": 2,
"learning_starts": 0,
"num_gpus": 0,
"min_iter_time_s": 1,
"timesteps_per_iteration": 100,
"optimizer": {
"num_replay_buffer_shards": 1,
},
})
def testSAC(self):
check_support("SAC", {"num_workers": 0})
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))