mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00

* Exploration API (+EpsilonGreedy sub-class). * Exploration API (+EpsilonGreedy sub-class). * Cleanup/LINT. * Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents). * Add `error` option to deprecation_warning(). * WIP. * Bug fix: Get exploration-info for tf framework. Bug fix: Properly deprecate some DQN config keys. * WIP. * LINT. * WIP. * Split PerWorkerEpsilonGreedy out of EpsilonGreedy. Docstrings. * Fix bug in sampler.py in case Policy has self.exploration = None * Update rllib/agents/dqn/dqn.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * WIP. * Update rllib/agents/trainer.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * WIP. * Change requests. * LINT * In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set * Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps). * Update rllib/evaluation/worker_set.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * Review fixes. * Fix default value for DQN's exploration spec. * LINT * Fix recursion bug (wrong parent c'tor). * Do not pass timestep to get_exploration_info. * Update tf_policy.py * Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs. * Bug fix tf-action-dist * DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG). * Switch off exploration when getting action probs from off-policy-estimator's policy. * LINT * Fix test_checkpoint_restore.py. * Deprecate all SAC exploration (unused) configs. * Properly use `model.last_output()` everywhere. Instead of `model._last_output`. * WIP. * Take out set_epsilon from multi-agent-env test (not needed, decays anyway). * WIP. * Trigger re-test (flaky checkpoint-restore test). * WIP. * WIP. * Add test case for deterministic action sampling in PPO. * bug fix. * Added deterministic test cases for different Agents. * Fix problem with TupleActions in dynamic-tf-policy. * Separate supported_spaces tests so they can be run separately for easier debugging. * LINT. * Fix autoregressive_action_dist.py test case. * Re-test. * Fix. * Remove duplicate py_test rule from bazel. * LINT. * WIP. * WIP. * SAC fix. * SAC fix. * WIP. * WIP. * WIP. * FIX 2 examples tests. * WIP. * WIP. * WIP. * WIP. * WIP. * Fix. * LINT. * Renamed test file. * WIP. * Add unittest.main. * Make action_dist_class mandatory. * fix * FIX. * WIP. * WIP. * Fix. * Fix. * Fix explorations test case (contextlib cannot find its own nullcontext??). * Force torch to be installed for QMIX. * LINT. * Fix determine_tests_to_run.py. * Fix determine_tests_to_run.py. * WIP * Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function). * Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function). * Rename some stuff. * Rename some stuff. * WIP. * update. * WIP. * Gumbel Softmax Dist. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP * WIP. * WIP. * Hypertune. * Hypertune. * Hypertune. * Lock-in. * Cleanup. * LINT. * Fix. * Update rllib/policy/eager_tf_policy.py Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com> * Update rllib/agents/sac/sac_policy.py Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com> * Update rllib/agents/sac/sac_policy.py Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com> * Update rllib/models/tf/tf_action_dist.py Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com> * Update rllib/models/tf/tf_action_dist.py Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com> * Fix items from review comments. * Add dm_tree to RLlib dependencies. * Add dm_tree to RLlib dependencies. * Fix DQN test cases ((Torch)Categorical). * Fix wrong pip install. Co-authored-by: Eric Liang <ekhliang@gmail.com> Co-authored-by: Kristian Hartikainen <kristian.hartikainen@gmail.com>
76 lines
1.9 KiB
Python
76 lines
1.9 KiB
Python
import unittest
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.agents.registry import get_agent_class
|
|
|
|
|
|
def check_support(alg, config, test_trace=True):
|
|
config["eager"] = True
|
|
if alg in ["APEX_DDPG", "TD3", "DDPG", "SAC"]:
|
|
config["env"] = "Pendulum-v0"
|
|
else:
|
|
config["env"] = "CartPole-v0"
|
|
a = get_agent_class(alg)
|
|
config["log_level"] = "ERROR"
|
|
|
|
config["eager_tracing"] = False
|
|
tune.run(a, config=config, stop={"training_iteration": 1})
|
|
|
|
if test_trace:
|
|
config["eager_tracing"] = True
|
|
tune.run(a, config=config, stop={"training_iteration": 1})
|
|
|
|
|
|
class TestEagerSupport(unittest.TestCase):
|
|
def setUp(self):
|
|
ray.init(num_cpus=4)
|
|
|
|
def tearDown(self):
|
|
ray.shutdown()
|
|
|
|
def testSimpleQ(self):
|
|
check_support("SimpleQ", {"num_workers": 0, "learning_starts": 0})
|
|
|
|
def testDQN(self):
|
|
check_support("DQN", {"num_workers": 0, "learning_starts": 0})
|
|
|
|
def testA2C(self):
|
|
check_support("A2C", {"num_workers": 0})
|
|
|
|
def testA3C(self):
|
|
check_support("A3C", {"num_workers": 1})
|
|
|
|
def testPG(self):
|
|
check_support("PG", {"num_workers": 0})
|
|
|
|
def testPPO(self):
|
|
check_support("PPO", {"num_workers": 0})
|
|
|
|
def testAPPO(self):
|
|
check_support("APPO", {"num_workers": 1, "num_gpus": 0})
|
|
|
|
def testIMPALA(self):
|
|
check_support("IMPALA", {"num_workers": 1, "num_gpus": 0})
|
|
|
|
def testAPEX_DQN(self):
|
|
check_support(
|
|
"APEX", {
|
|
"num_workers": 2,
|
|
"learning_starts": 0,
|
|
"num_gpus": 0,
|
|
"min_iter_time_s": 1,
|
|
"timesteps_per_iteration": 100,
|
|
"optimizer": {
|
|
"num_replay_buffer_shards": 1,
|
|
},
|
|
})
|
|
|
|
def testSAC(self):
|
|
check_support("SAC", {"num_workers": 0})
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|