mirror of
https://github.com/vale981/ray
synced 2025-03-08 19:41:38 -05:00

* Exploration API (+EpsilonGreedy sub-class). * Exploration API (+EpsilonGreedy sub-class). * Cleanup/LINT. * Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents). * Add `error` option to deprecation_warning(). * WIP. * Bug fix: Get exploration-info for tf framework. Bug fix: Properly deprecate some DQN config keys. * WIP. * LINT. * WIP. * Split PerWorkerEpsilonGreedy out of EpsilonGreedy. Docstrings. * Fix bug in sampler.py in case Policy has self.exploration = None * Update rllib/agents/dqn/dqn.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * WIP. * Update rllib/agents/trainer.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * WIP. * Change requests. * LINT * In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set * Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps). * Update rllib/evaluation/worker_set.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * Review fixes. * Fix default value for DQN's exploration spec. * LINT * Fix recursion bug (wrong parent c'tor). * Do not pass timestep to get_exploration_info. * Update tf_policy.py * Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs. * Bug fix tf-action-dist * DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG). * Switch off exploration when getting action probs from off-policy-estimator's policy. * LINT * Fix test_checkpoint_restore.py. * Deprecate all SAC exploration (unused) configs. * Properly use `model.last_output()` everywhere. Instead of `model._last_output`. * WIP. * Take out set_epsilon from multi-agent-env test (not needed, decays anyway). * WIP. * Trigger re-test (flaky checkpoint-restore test). * WIP. * WIP. * Add test case for deterministic action sampling in PPO. * bug fix. * Added deterministic test cases for different Agents. * Fix problem with TupleActions in dynamic-tf-policy. * Separate supported_spaces tests so they can be run separately for easier debugging. * LINT. * Fix autoregressive_action_dist.py test case. * Re-test. * Fix. * Remove duplicate py_test rule from bazel. * LINT. * WIP. * WIP. * SAC fix. * SAC fix. * WIP. * WIP. * WIP. * FIX 2 examples tests. * WIP. * WIP. * WIP. * WIP. * WIP. * Fix. * LINT. * Renamed test file. * WIP. * Add unittest.main. * Make action_dist_class mandatory. * fix * FIX. * WIP. * WIP. * Fix. * Fix. * Fix explorations test case (contextlib cannot find its own nullcontext??). * Force torch to be installed for QMIX. * LINT. * Fix determine_tests_to_run.py. * Fix determine_tests_to_run.py. * WIP * Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function). * Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function). * Rename some stuff. * Rename some stuff. * WIP. * update. * WIP. * Gumbel Softmax Dist. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP. * WIP * WIP. * WIP. * Hypertune. * Hypertune. * Hypertune. * Lock-in. * Cleanup. * LINT. * Fix. * Update rllib/policy/eager_tf_policy.py Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com> * Update rllib/agents/sac/sac_policy.py Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com> * Update rllib/agents/sac/sac_policy.py Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com> * Update rllib/models/tf/tf_action_dist.py Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com> * Update rllib/models/tf/tf_action_dist.py Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com> * Fix items from review comments. * Add dm_tree to RLlib dependencies. * Add dm_tree to RLlib dependencies. * Fix DQN test cases ((Torch)Categorical). * Fix wrong pip install. Co-authored-by: Eric Liang <ekhliang@gmail.com> Co-authored-by: Kristian Hartikainen <kristian.hartikainen@gmail.com>
105 lines
3.8 KiB
Python
105 lines
3.8 KiB
Python
import numpy as np
|
|
import unittest
|
|
|
|
import ray.rllib.agents.dqn as dqn
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.test_utils import check
|
|
|
|
tf = try_import_tf()
|
|
|
|
|
|
class TestDQN(unittest.TestCase):
|
|
def test_dqn_compilation(self):
|
|
"""Test whether a DQNTrainer can be built with both frameworks."""
|
|
config = dqn.DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 0 # Run locally.
|
|
|
|
# tf.
|
|
config["eager"] = False
|
|
trainer = dqn.DQNTrainer(config=config, env="CartPole-v0")
|
|
num_iterations = 2
|
|
for i in range(num_iterations):
|
|
results = trainer.train()
|
|
print(results)
|
|
|
|
config["eager"] = True
|
|
trainer = dqn.DQNTrainer(config=config, env="CartPole-v0")
|
|
num_iterations = 2
|
|
for i in range(num_iterations):
|
|
results = trainer.train()
|
|
print(results)
|
|
|
|
def test_dqn_exploration_and_soft_q_config(self):
|
|
"""Tests, whether a DQN Agent outputs exploration/softmaxed actions."""
|
|
config = dqn.DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 0 # Run locally.
|
|
config["env_config"] = {"is_slippery": False, "map_name": "4x4"}
|
|
obs = np.array(0)
|
|
|
|
# Test against all frameworks.
|
|
for fw in ["eager", "tf", "torch"]:
|
|
if fw == "torch":
|
|
continue
|
|
|
|
print("framework={}".format(fw))
|
|
|
|
config["eager"] = True if fw == "eager" else False
|
|
config["use_pytorch"] = True if fw == "torch" else False
|
|
|
|
# Default EpsilonGreedy setup.
|
|
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
|
|
# Setting explore=False should always return the same action.
|
|
a_ = trainer.compute_action(obs, explore=False)
|
|
for _ in range(50):
|
|
a = trainer.compute_action(obs, explore=False)
|
|
check(a, a_)
|
|
# explore=None (default: explore) should return different actions.
|
|
actions = []
|
|
for _ in range(50):
|
|
actions.append(trainer.compute_action(obs))
|
|
check(np.std(actions), 0.0, false=True)
|
|
|
|
# Low softmax temperature. Behaves like argmax
|
|
# (but no epsilon exploration).
|
|
config["exploration_config"] = {
|
|
"type": "SoftQ",
|
|
"temperature": 0.001
|
|
}
|
|
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
|
|
# Due to the low temp, always expect the same action.
|
|
a_ = trainer.compute_action(obs)
|
|
for _ in range(50):
|
|
a = trainer.compute_action(obs)
|
|
check(a, a_)
|
|
|
|
# Higher softmax temperature.
|
|
config["exploration_config"]["temperature"] = 1.0
|
|
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
|
|
|
|
# Even with the higher temperature, if we set explore=False, we
|
|
# should expect the same actions always.
|
|
a_ = trainer.compute_action(obs, explore=False)
|
|
for _ in range(50):
|
|
a = trainer.compute_action(obs, explore=False)
|
|
check(a, a_)
|
|
|
|
# Due to the higher temp, expect different actions avg'ing
|
|
# around 1.5.
|
|
actions = []
|
|
for _ in range(300):
|
|
actions.append(trainer.compute_action(obs))
|
|
check(np.std(actions), 0.0, false=True)
|
|
|
|
# With Random exploration.
|
|
config["exploration_config"] = {"type": "Random"}
|
|
config["explore"] = True
|
|
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
|
|
actions = []
|
|
for _ in range(300):
|
|
actions.append(trainer.compute_action(obs))
|
|
check(np.std(actions), 0.0, false=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import unittest
|
|
unittest.main(verbosity=1)
|