ray/rllib/connectors/agent/pipeline.py

54 lines
1.7 KiB
Python

from typing import Any, List
from ray.rllib.connectors.connector import (
AgentConnector,
Connector,
ConnectorContext,
ConnectorPipeline,
get_connector,
register_connector,
)
from ray.rllib.utils.typing import ActionConnectorDataType, AgentConnectorDataType
from ray.util.annotations import PublicAPI
@PublicAPI(stability="alpha")
class AgentConnectorPipeline(ConnectorPipeline, AgentConnector):
def __init__(self, ctx: ConnectorContext, connectors: List[Connector]):
super().__init__(ctx)
self.connectors = connectors
def is_training(self, is_training: bool):
self._is_training = is_training
for c in self.connectors:
c.is_training(is_training)
def reset(self, env_id: str):
for c in self.connectors:
c.reset(env_id)
def on_policy_output(self, output: ActionConnectorDataType):
for c in self.connectors:
c.on_policy_output(output)
def __call__(
self, acd_list: List[AgentConnectorDataType]
) -> List[AgentConnectorDataType]:
ret = acd_list
for c in self.connectors:
ret = c(ret)
return ret
def to_config(self):
return AgentConnectorPipeline.__name__, [c.to_config() for c in self.connectors]
@staticmethod
def from_config(ctx: ConnectorContext, params: List[Any]):
assert (
type(params) == list
), "AgentConnectorPipeline takes a list of connector params."
connectors = [get_connector(ctx, name, subparams) for name, subparams in params]
return AgentConnectorPipeline(ctx, connectors)
register_connector(AgentConnectorPipeline.__name__, AgentConnectorPipeline)