ray/rllib/agents/impala/tests/test_impala.py

72 lines
2.3 KiB
Python

import unittest
import ray
import ray.rllib.agents.impala as impala
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check_compute_single_action, \
framework_iterator
tf1, tf, tfv = try_import_tf()
class TestIMPALA(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_impala_compilation(self):
"""Test whether an ImpalaTrainer can be built with both frameworks."""
config = impala.DEFAULT_CONFIG.copy()
config["model"]["lstm_use_prev_action"] = True
config["model"]["lstm_use_prev_reward"] = True
num_iterations = 1
env = "CartPole-v0"
for _ in framework_iterator(config):
local_cfg = config.copy()
for lstm in [False, True]:
local_cfg["num_aggregation_workers"] = 0 if not lstm else 1
local_cfg["model"]["use_lstm"] = lstm
print("lstm={} aggregation-worker={}".format(
lstm, local_cfg["num_aggregation_workers"]))
# Test with and w/o aggregation workers (this has nothing
# to do with LSTMs, though).
trainer = impala.ImpalaTrainer(config=local_cfg, env=env)
for i in range(num_iterations):
print(trainer.train())
check_compute_single_action(
trainer,
include_state=lstm,
include_prev_action_reward=lstm,
)
trainer.stop()
def test_impala_lr_schedule(self):
config = impala.DEFAULT_CONFIG.copy()
config["lr_schedule"] = [
[0, 0.0005],
[10000, 0.000001],
]
local_cfg = config.copy()
trainer = impala.ImpalaTrainer(config=local_cfg, env="CartPole-v0")
def get_lr(result):
return result["info"]["learner"][DEFAULT_POLICY_ID]["cur_lr"]
try:
r1 = trainer.train()
r2 = trainer.train()
assert get_lr(r2) < get_lr(r1), (r1, r2)
finally:
trainer.stop()
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))