ray/rllib
2019-11-18 10:39:07 -08:00
..
agents [rllib] Reorganize trainer config, add warnings about high VF loss magnitude for PPO (#6181) 2019-11-18 10:39:07 -08:00
contrib Fix TF2 / rllib test (#5846) 2019-10-07 14:25:16 -07:00
env [rllib] Try moving RLlib to top level dir (#5324) 2019-08-05 23:25:49 -07:00
evaluation [rllib] Tracing for eager tensorflow policies with tf.function (#5705) 2019-09-17 01:44:20 -07:00
examples Fix linting on master branch (#6174) 2019-11-16 10:02:58 -08:00
models Fix linting on master branch (#6174) 2019-11-16 10:02:58 -08:00
offline Fix linting on master branch (#6174) 2019-11-16 10:02:58 -08:00
optimizers [rllib] Add microbatch optimizer with A2C example (#6161) 2019-11-14 12:14:00 -08:00
policy Allow EntropyCoeffSchedule to accept custom schedule (#6158) 2019-11-14 00:45:43 -08:00
tests [rllib] Fix and add test for LR annealing config 2019-11-07 12:17:27 -08:00
tuned_examples [rllib] Add microbatch optimizer with A2C example (#6161) 2019-11-14 12:14:00 -08:00
utils [rllib] remove exists call (#6168) 2019-11-15 21:59:40 -08:00
__init__.py Fix deprecated warning (#6142) 2019-11-11 17:49:15 -08:00
asv.conf.json [rllib] Try moving RLlib to top level dir (#5324) 2019-08-05 23:25:49 -07:00
README.md MADDPG implementation in RLlib (#5348) 2019-08-06 16:22:06 -07:00
rollout.py [rllib] Rollout extensions (#6065) 2019-11-05 20:34:18 -08:00
scripts.py [rllib] Try moving RLlib to top level dir (#5324) 2019-08-05 23:25:49 -07:00
train.py Reduce RLlib log verbosity (#6154) 2019-11-13 18:50:45 -08:00

RLlib: Scalable Reinforcement Learning

RLlib is an open-source library for reinforcement learning that offers both high scalability and a unified API for a variety of applications.

For an overview of RLlib, see the documentation.

If you've found RLlib useful for your research, you can cite the paper as follows:

@inproceedings{liang2018rllib,
    Author = {Eric Liang and
              Richard Liaw and
              Robert Nishihara and
              Philipp Moritz and
              Roy Fox and
              Ken Goldberg and
              Joseph E. Gonzalez and
              Michael I. Jordan and
              Ion Stoica},
    Title = {{RLlib}: Abstractions for Distributed Reinforcement Learning},
    Booktitle = {International Conference on Machine Learning ({ICML})},
    Year = {2018}
}

Development Install

You can develop RLlib locally without needing to compile Ray by using the setup-dev.py script. This sets up links between the rllib dir in your git repo and the one bundled with the ray package. When using this script, make sure that your git branch is in sync with the installed Ray binaries (i.e., you are up-to-date on master and have the latest wheel installed.)