ray/rllib/agents/mock.py

125 lines
3.5 KiB
Python

import os
import pickle
import numpy as np
from ray.tune import result as tune_result
from ray.rllib.agents.trainer import Trainer, with_common_config
class _MockTrainer(Trainer):
"""Mock trainer for use in tests"""
_name = "MockTrainer"
_default_config = with_common_config({
"mock_error": False,
"persistent_error": False,
"test_variable": 1,
"num_workers": 0,
"user_checkpoint_freq": 0,
"framework": "tf",
})
@classmethod
def default_resource_request(cls, config):
return None
def _init(self, config, env_creator):
self.info = None
self.restored = False
def step(self):
if self.config["mock_error"] and self.iteration == 1 \
and (self.config["persistent_error"] or not self.restored):
raise Exception("mock error")
result = dict(
episode_reward_mean=10,
episode_len_mean=10,
timesteps_this_iter=10,
info={})
if self.config["user_checkpoint_freq"] > 0 and self.iteration > 0:
if self.iteration % self.config["user_checkpoint_freq"] == 0:
result.update({tune_result.SHOULD_CHECKPOINT: True})
return result
def save_checkpoint(self, checkpoint_dir):
path = os.path.join(checkpoint_dir, "mock_agent.pkl")
with open(path, "wb") as f:
pickle.dump(self.info, f)
return path
def load_checkpoint(self, checkpoint_path):
with open(checkpoint_path, "rb") as f:
info = pickle.load(f)
self.info = info
self.restored = True
def _register_if_needed(self, env_object):
pass
def set_info(self, info):
self.info = info
return info
def get_info(self, sess=None):
return self.info
class _SigmoidFakeData(_MockTrainer):
"""Trainer that returns sigmoid learning curves.
This can be helpful for evaluating early stopping algorithms."""
_name = "SigmoidFakeData"
_default_config = with_common_config({
"width": 100,
"height": 100,
"offset": 0,
"iter_time": 10,
"iter_timesteps": 1,
"num_workers": 0,
})
def step(self):
i = max(0, self.iteration - self.config["offset"])
v = np.tanh(float(i) / self.config["width"])
v *= self.config["height"]
return dict(
episode_reward_mean=v,
episode_len_mean=v,
timesteps_this_iter=self.config["iter_timesteps"],
time_this_iter_s=self.config["iter_time"],
info={})
class _ParameterTuningTrainer(_MockTrainer):
_name = "ParameterTuningTrainer"
_default_config = with_common_config({
"reward_amt": 10,
"dummy_param": 10,
"dummy_param2": 15,
"iter_time": 10,
"iter_timesteps": 1,
"num_workers": 0,
})
def step(self):
return dict(
episode_reward_mean=self.config["reward_amt"] * self.iteration,
episode_len_mean=self.config["reward_amt"],
timesteps_this_iter=self.config["iter_timesteps"],
time_this_iter_s=self.config["iter_time"],
info={})
def _trainer_import_failed(trace):
"""Returns dummy agent class for if PyTorch etc. is not installed."""
class _TrainerImportFailed(Trainer):
_name = "TrainerImportFailed"
_default_config = with_common_config({})
def setup(self, config):
raise ImportError(trace)
return _TrainerImportFailed