ray/rllib/examples/env/random_env.py

118 lines
4.2 KiB
Python

import copy
import gym
from gym.spaces import Discrete, Tuple
import numpy as np
from ray.rllib.examples.env.multi_agent import make_multi_agent
class RandomEnv(gym.Env):
"""A randomly acting environment.
Can be instantiated with arbitrary action-, observation-, and reward
spaces. Observations and rewards are generated by simply sampling from the
observation/reward spaces. The probability of a `done=True` after each
action can be configured, as well as the max episode length.
"""
def __init__(self, config=None):
config = config or {}
# Action space.
self.action_space = config.get("action_space", Discrete(2))
# Observation space from which to sample.
self.observation_space = config.get("observation_space", Discrete(2))
# Reward space from which to sample.
self.reward_space = config.get(
"reward_space",
gym.spaces.Box(low=-1.0, high=1.0, shape=(), dtype=np.float32),
)
self.static_samples = config.get("static_samples", False)
if self.static_samples:
self.observation_sample = self.observation_space.sample()
self.reward_sample = self.reward_space.sample()
# Chance that an episode ends at any step.
# Note that a max episode length can be specified via
# `max_episode_len`.
self.p_done = config.get("p_done", 0.1)
# A max episode length. Even if the `p_done` sampling does not lead
# to a terminus, the episode will end after at most this many
# timesteps.
# Set to 0 or None for using no limit on the episode length.
self.max_episode_len = config.get("max_episode_len", None)
# Whether to check action bounds.
self.check_action_bounds = config.get("check_action_bounds", False)
# Steps taken so far (after last reset).
self.steps = 0
def reset(self):
self.steps = 0
if not self.static_samples:
return self.observation_space.sample()
else:
return copy.deepcopy(self.observation_sample)
def step(self, action):
if self.check_action_bounds and not self.action_space.contains(action):
raise ValueError(
"Illegal action for {}: {}".format(self.action_space, action)
)
if isinstance(self.action_space, Tuple) and len(action) != len(
self.action_space.spaces
):
raise ValueError(
"Illegal action for {}: {}".format(self.action_space, action)
)
self.steps += 1
done = False
# We are `done` as per our max-episode-len.
if self.max_episode_len and self.steps >= self.max_episode_len:
done = True
# Max episode length not reached yet -> Sample `done` via `p_done`.
elif self.p_done > 0.0:
done = bool(
np.random.choice([True, False], p=[self.p_done, 1.0 - self.p_done])
)
if not self.static_samples:
return (
self.observation_space.sample(),
self.reward_space.sample(),
done,
{},
)
else:
return (
copy.deepcopy(self.observation_sample),
copy.deepcopy(self.reward_sample),
done,
{},
)
# Multi-agent version of the RandomEnv.
RandomMultiAgentEnv = make_multi_agent(lambda c: RandomEnv(c))
# Large observation space "pre-compiled" random env (for testing).
class RandomLargeObsSpaceEnv(RandomEnv):
def __init__(self, config=None):
config = config or {}
config.update({"observation_space": gym.spaces.Box(-1.0, 1.0, (5000,))})
super().__init__(config=config)
# Large observation space + cont. actions "pre-compiled" random env
# (for testing).
class RandomLargeObsSpaceEnvContActions(RandomEnv):
def __init__(self, config=None):
config = config or {}
config.update(
{
"observation_space": gym.spaces.Box(-1.0, 1.0, (5000,)),
"action_space": gym.spaces.Box(-1.0, 1.0, (5,)),
}
)
super().__init__(config=config)