ray/rllib/examples/env/parametric_actions_cartpole.py
2022-02-17 14:06:14 +01:00

144 lines
5.3 KiB
Python

import gym
from gym.spaces import Box, Dict, Discrete
import numpy as np
import random
class ParametricActionsCartPole(gym.Env):
"""Parametric action version of CartPole.
In this env there are only ever two valid actions, but we pretend there are
actually up to `max_avail_actions` actions that can be taken, and the two
valid actions are randomly hidden among this set.
At each step, we emit a dict of:
- the actual cart observation
- a mask of valid actions (e.g., [0, 0, 1, 0, 0, 1] for 6 max avail)
- the list of action embeddings (w/ zeroes for invalid actions) (e.g.,
[[0, 0],
[0, 0],
[-0.2322, -0.2569],
[0, 0],
[0, 0],
[0.7878, 1.2297]] for max_avail_actions=6)
In a real environment, the actions embeddings would be larger than two
units of course, and also there would be a variable number of valid actions
per step instead of always [LEFT, RIGHT].
"""
def __init__(self, max_avail_actions):
# Use simple random 2-unit action embeddings for [LEFT, RIGHT]
self.left_action_embed = np.random.randn(2)
self.right_action_embed = np.random.randn(2)
self.action_space = Discrete(max_avail_actions)
self.wrapped = gym.make("CartPole-v0")
self.observation_space = Dict(
{
"action_mask": Box(0, 1, shape=(max_avail_actions,), dtype=np.float32),
"avail_actions": Box(-10, 10, shape=(max_avail_actions, 2)),
"cart": self.wrapped.observation_space,
}
)
self._skip_env_checking = True
def update_avail_actions(self):
self.action_assignments = np.array(
[[0.0, 0.0]] * self.action_space.n, dtype=np.float32
)
self.action_mask = np.array([0.0] * self.action_space.n, dtype=np.float32)
self.left_idx, self.right_idx = random.sample(range(self.action_space.n), 2)
self.action_assignments[self.left_idx] = self.left_action_embed
self.action_assignments[self.right_idx] = self.right_action_embed
self.action_mask[self.left_idx] = 1
self.action_mask[self.right_idx] = 1
def reset(self):
self.update_avail_actions()
return {
"action_mask": self.action_mask,
"avail_actions": self.action_assignments,
"cart": self.wrapped.reset(),
}
def step(self, action):
if action == self.left_idx:
actual_action = 0
elif action == self.right_idx:
actual_action = 1
else:
raise ValueError(
"Chosen action was not one of the non-zero action embeddings",
action,
self.action_assignments,
self.action_mask,
self.left_idx,
self.right_idx,
)
orig_obs, rew, done, info = self.wrapped.step(actual_action)
self.update_avail_actions()
self.action_mask = self.action_mask.astype(np.float32)
obs = {
"action_mask": self.action_mask,
"avail_actions": self.action_assignments,
"cart": orig_obs,
}
return obs, rew, done, info
class ParametricActionsCartPoleNoEmbeddings(gym.Env):
"""Same as the above ParametricActionsCartPole.
However, action embeddings are not published inside observations,
but will be learnt by the model.
At each step, we emit a dict of:
- the actual cart observation
- a mask of valid actions (e.g., [0, 0, 1, 0, 0, 1] for 6 max avail)
- action embeddings (w/ "dummy embedding" for invalid actions) are
outsourced in the model and will be learned.
"""
def __init__(self, max_avail_actions):
# Randomly set which two actions are valid and available.
self.left_idx, self.right_idx = random.sample(range(max_avail_actions), 2)
self.valid_avail_actions_mask = np.array(
[0.0] * max_avail_actions, dtype=np.float32
)
self.valid_avail_actions_mask[self.left_idx] = 1
self.valid_avail_actions_mask[self.right_idx] = 1
self.action_space = Discrete(max_avail_actions)
self.wrapped = gym.make("CartPole-v0")
self.observation_space = Dict(
{
"valid_avail_actions_mask": Box(0, 1, shape=(max_avail_actions,)),
"cart": self.wrapped.observation_space,
}
)
self._skip_env_checking = True
def reset(self):
return {
"valid_avail_actions_mask": self.valid_avail_actions_mask,
"cart": self.wrapped.reset(),
}
def step(self, action):
if action == self.left_idx:
actual_action = 0
elif action == self.right_idx:
actual_action = 1
else:
raise ValueError(
"Chosen action was not one of the non-zero action embeddings",
action,
self.valid_avail_actions_mask,
self.left_idx,
self.right_idx,
)
orig_obs, rew, done, info = self.wrapped.step(actual_action)
obs = {
"valid_avail_actions_mask": self.valid_avail_actions_mask,
"cart": orig_obs,
}
return obs, rew, done, info