mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
159 lines
5.5 KiB
Python
159 lines
5.5 KiB
Python
import logging
|
|
import gym
|
|
import numpy as np
|
|
from typing import Callable, List, Tuple
|
|
|
|
from ray.rllib.utils.annotations import override, PublicAPI
|
|
from ray.rllib.utils.types import EnvType, EnvConfigDict, EnvObsType, \
|
|
EnvInfoDict, EnvActionType
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@PublicAPI
|
|
class VectorEnv:
|
|
"""An environment that supports batch evaluation using clones of sub-envs.
|
|
"""
|
|
|
|
def __init__(self, observation_space: gym.Space, action_space: gym.Space,
|
|
num_envs: int):
|
|
"""Initializes a VectorEnv object.
|
|
|
|
Args:
|
|
observation_space (Space): The observation Space of a single
|
|
sub-env.
|
|
action_space (Space): The action Space of a single sub-env.
|
|
num_envs (int): The number of clones to make of the given sub-env.
|
|
"""
|
|
self.observation_space = observation_space
|
|
self.action_space = action_space
|
|
self.num_envs = num_envs
|
|
|
|
@staticmethod
|
|
def wrap(make_env: Callable[[int], EnvType] = None,
|
|
existing_envs: List[gym.Env] = None,
|
|
num_envs: int = 1,
|
|
action_space: gym.Space = None,
|
|
observation_space: gym.Space = None,
|
|
env_config: EnvConfigDict = None):
|
|
return _VectorizedGymEnv(
|
|
make_env=make_env,
|
|
existing_envs=existing_envs or [],
|
|
num_envs=num_envs,
|
|
observation_space=observation_space,
|
|
action_space=action_space,
|
|
env_config=env_config)
|
|
|
|
@PublicAPI
|
|
def vector_reset(self) -> List[EnvObsType]:
|
|
"""Resets all sub-environments.
|
|
|
|
Returns:
|
|
obs (List[any]): List of observations from each environment.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@PublicAPI
|
|
def reset_at(self, index: int) -> EnvObsType:
|
|
"""Resets a single environment.
|
|
|
|
Returns:
|
|
obs (obj): Observations from the reset sub environment.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@PublicAPI
|
|
def vector_step(
|
|
self, actions: List[EnvActionType]
|
|
) -> Tuple[List[EnvObsType], List[float], List[bool], List[EnvInfoDict]]:
|
|
"""Performs a vectorized step on all sub environments using `actions`.
|
|
|
|
Arguments:
|
|
actions (List[any]): List of actions (one for each sub-env).
|
|
|
|
Returns:
|
|
obs (List[any]): New observations for each sub-env.
|
|
rewards (List[any]): Reward values for each sub-env.
|
|
dones (List[any]): Done values for each sub-env.
|
|
infos (List[any]): Info values for each sub-env.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@PublicAPI
|
|
def get_unwrapped(self) -> List[EnvType]:
|
|
"""Returns the underlying sub environments.
|
|
|
|
Returns:
|
|
List[Env]: List of all underlying sub environments.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
|
|
class _VectorizedGymEnv(VectorEnv):
|
|
"""Internal wrapper to translate any gym envs into a VectorEnv object.
|
|
"""
|
|
|
|
def __init__(self,
|
|
make_env=None,
|
|
existing_envs=None,
|
|
num_envs=1,
|
|
*,
|
|
observation_space=None,
|
|
action_space=None,
|
|
env_config=None):
|
|
"""Initializes a _VectorizedGymEnv object.
|
|
|
|
Args:
|
|
make_env (Optional[callable]): Factory that produces a new gym env
|
|
taking a single `config` dict arg. Must be defined if the
|
|
number of `existing_envs` is less than `num_envs`.
|
|
existing_envs (Optional[List[Env]]): Optional list of already
|
|
instantiated sub environments.
|
|
num_envs (int): Total number of sub environments in this VectorEnv.
|
|
action_space (Optional[Space]): The action space. If None, use
|
|
existing_envs[0]'s action space.
|
|
observation_space (Optional[Space]): The observation space.
|
|
If None, use existing_envs[0]'s action space.
|
|
env_config (Optional[dict]): Additional sub env config to pass to
|
|
make_env as first arg.
|
|
"""
|
|
self.make_env = make_env
|
|
self.envs = existing_envs
|
|
while len(self.envs) < num_envs:
|
|
self.envs.append(self.make_env(len(self.envs)))
|
|
|
|
super().__init__(
|
|
observation_space=observation_space
|
|
or self.envs[0].observation_space,
|
|
action_space=action_space or self.envs[0].action_space,
|
|
num_envs=num_envs)
|
|
|
|
@override(VectorEnv)
|
|
def vector_reset(self):
|
|
return [e.reset() for e in self.envs]
|
|
|
|
@override(VectorEnv)
|
|
def reset_at(self, index):
|
|
return self.envs[index].reset()
|
|
|
|
@override(VectorEnv)
|
|
def vector_step(self, actions):
|
|
obs_batch, rew_batch, done_batch, info_batch = [], [], [], []
|
|
for i in range(self.num_envs):
|
|
obs, r, done, info = self.envs[i].step(actions[i])
|
|
if not np.isscalar(r) or not np.isreal(r) or not np.isfinite(r):
|
|
raise ValueError(
|
|
"Reward should be finite scalar, got {} ({}). "
|
|
"Actions={}.".format(r, type(r), actions[i]))
|
|
if type(info) is not dict:
|
|
raise ValueError("Info should be a dict, got {} ({})".format(
|
|
info, type(info)))
|
|
obs_batch.append(obs)
|
|
rew_batch.append(r)
|
|
done_batch.append(done)
|
|
info_batch.append(info)
|
|
return obs_batch, rew_batch, done_batch, info_batch
|
|
|
|
@override(VectorEnv)
|
|
def get_unwrapped(self):
|
|
return self.envs
|