ray/rllib/utils/torch_ops.py
Michael Luo 4cbe13cdfd
[RLlib] CQL loss fn fixes, MuJoCo + Pendulum benchmarks, offline-RL example script w/ json file. (#15603)
Co-authored-by: Sven Mika <sven@anyscale.io>
Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-05-04 19:06:19 +02:00

226 lines
7.4 KiB
Python

from gym.spaces import Discrete, MultiDiscrete
import numpy as np
import tree # pip install dm_tree
import warnings
from ray.rllib.models.repeated_values import RepeatedValues
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.numpy import SMALL_NUMBER
torch, nn = try_import_torch()
# Limit values suitable for use as close to a -inf logit. These are useful
# since -inf / inf cause NaNs during backprop.
FLOAT_MIN = -3.4e38
FLOAT_MAX = 3.4e38
def apply_grad_clipping(policy, optimizer, loss):
"""Applies gradient clipping to already computed grads inside `optimizer`.
Args:
policy (TorchPolicy): The TorchPolicy, which calculated `loss`.
optimizer (torch.optim.Optimizer): A local torch optimizer object.
loss (torch.Tensor): The torch loss tensor.
"""
info = {}
if policy.config["grad_clip"]:
for param_group in optimizer.param_groups:
# Make sure we only pass params with grad != None into torch
# clip_grad_norm_. Would fail otherwise.
params = list(
filter(lambda p: p.grad is not None, param_group["params"]))
if params:
grad_gnorm = nn.utils.clip_grad_norm_(
params, policy.config["grad_clip"])
if isinstance(grad_gnorm, torch.Tensor):
grad_gnorm = grad_gnorm.cpu().numpy()
info["grad_gnorm"] = grad_gnorm
return info
def atanh(x):
return 0.5 * torch.log(
(1 + x).clamp(min=SMALL_NUMBER) / (1 - x).clamp(min=SMALL_NUMBER))
def convert_to_non_torch_type(stats):
"""Converts values in `stats` to non-Tensor numpy or python types.
Args:
stats (any): Any (possibly nested) struct, the values in which will be
converted and returned as a new struct with all torch tensors
being converted to numpy types.
Returns:
Any: A new struct with the same structure as `stats`, but with all
values converted to non-torch Tensor types.
"""
# The mapping function used to numpyize torch Tensors.
def mapping(item):
if isinstance(item, torch.Tensor):
return item.cpu().item() if len(item.size()) == 0 else \
item.detach().cpu().numpy()
else:
return item
return tree.map_structure(mapping, stats)
def convert_to_torch_tensor(x, device=None):
"""Converts any struct to torch.Tensors.
x (any): Any (possibly nested) struct, the values in which will be
converted and returned as a new struct with all leaves converted
to torch tensors.
Returns:
Any: A new struct with the same structure as `stats`, but with all
values converted to torch Tensor types.
"""
def mapping(item):
# Already torch tensor -> make sure it's on right device.
if torch.is_tensor(item):
return item if device is None else item.to(device)
# Special handling of "Repeated" values.
elif isinstance(item, RepeatedValues):
return RepeatedValues(
tree.map_structure(mapping, item.values), item.lengths,
item.max_len)
# Numpy arrays.
if isinstance(item, np.ndarray):
# np.object_ type (e.g. info dicts in train batch): leave as-is.
if item.dtype == np.object_:
return item
# Non-writable numpy-arrays will cause PyTorch warning.
elif item.flags.writeable is False:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
tensor = torch.from_numpy(item)
# Already numpy: Wrap as torch tensor.
else:
tensor = torch.from_numpy(item)
# Everything else: Convert to numpy, then wrap as torch tensor.
else:
tensor = torch.from_numpy(np.asarray(item))
# Floatify all float64 tensors.
if tensor.dtype == torch.double:
tensor = tensor.float()
return tensor if device is None else tensor.to(device)
return tree.map_structure(mapping, x)
def explained_variance(y, pred):
y_var = torch.var(y, dim=[0])
diff_var = torch.var(y - pred, dim=[0])
min_ = torch.tensor([-1.0]).to(pred.device)
return torch.max(min_, 1 - (diff_var / y_var))
def global_norm(tensors):
"""Returns the global L2 norm over a list of tensors.
output = sqrt(SUM(t ** 2 for t in tensors)),
where SUM reduces over all tensors and over all elements in tensors.
Args:
tensors (List[torch.Tensor]): The list of tensors to calculate the
global norm over.
"""
# List of single tensors' L2 norms: SQRT(SUM(xi^2)) over all xi in tensor.
single_l2s = [
torch.pow(torch.sum(torch.pow(t, 2.0)), 0.5) for t in tensors
]
# Compute global norm from all single tensors' L2 norms.
return torch.pow(sum(torch.pow(l2, 2.0) for l2 in single_l2s), 0.5)
def huber_loss(x, delta=1.0):
"""Reference: https://en.wikipedia.org/wiki/Huber_loss"""
return torch.where(
torch.abs(x) < delta,
torch.pow(x, 2.0) * 0.5, delta * (torch.abs(x) - 0.5 * delta))
def l2_loss(x):
"""Computes half the L2 norm of a tensor without the sqrt.
output = sum(x ** 2) / 2
"""
return torch.sum(torch.pow(x, 2.0)) / 2.0
def minimize_and_clip(optimizer, clip_val=10):
"""Clips gradients found in `optimizer.param_groups` to given value.
Ensures the norm of the gradients for each variable is clipped to
`clip_val`
"""
for param_group in optimizer.param_groups:
for p in param_group["params"]:
if p.grad is not None:
torch.nn.utils.clip_grad_norm_(p.grad, clip_val)
def one_hot(x, space):
if isinstance(space, Discrete):
return nn.functional.one_hot(x.long(), space.n)
elif isinstance(space, MultiDiscrete):
return torch.cat(
[
nn.functional.one_hot(x[:, i].long(), n)
for i, n in enumerate(space.nvec)
],
dim=-1)
else:
raise ValueError("Unsupported space for `one_hot`: {}".format(space))
def reduce_mean_ignore_inf(x, axis):
"""Same as torch.mean() but ignores -inf values."""
mask = torch.ne(x, float("-inf"))
x_zeroed = torch.where(mask, x, torch.zeros_like(x))
return torch.sum(x_zeroed, axis) / torch.sum(mask.float(), axis)
def sequence_mask(lengths, maxlen=None, dtype=None, time_major=False):
"""Offers same behavior as tf.sequence_mask for torch.
Thanks to Dimitris Papatheodorou
(https://discuss.pytorch.org/t/pytorch-equivalent-for-tf-sequence-mask/
39036).
"""
if maxlen is None:
maxlen = int(lengths.max())
mask = ~(torch.ones(
(len(lengths), maxlen)).to(lengths.device).cumsum(dim=1).t() > lengths)
if not time_major:
mask = mask.t()
mask.type(dtype or torch.bool)
return mask
def softmax_cross_entropy_with_logits(logits, labels):
"""Same behavior as tf.nn.softmax_cross_entropy_with_logits.
Args:
x (TensorType):
Returns:
"""
return torch.sum(-labels * nn.functional.log_softmax(logits, -1), -1)
class Swish(nn.Module):
def __init__(self):
super().__init__()
self._beta = nn.Parameter(torch.tensor(1.0))
def forward(self, input_tensor):
return input_tensor * torch.sigmoid(self._beta * input_tensor)