mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
37 lines
1 KiB
YAML
37 lines
1 KiB
YAML
# Our implementation of SAC can reach 9k reward in 400k timesteps
|
|
halfcheetah_sac:
|
|
env: HalfCheetah-v3
|
|
run: SAC
|
|
stop:
|
|
episode_reward_mean: 9000
|
|
config:
|
|
horizon: 1000
|
|
soft_horizon: False
|
|
Q_model:
|
|
hidden_activation: relu
|
|
hidden_layer_sizes: [256, 256]
|
|
policy_model:
|
|
hidden_activation: relu
|
|
hidden_layer_sizes: [256, 256]
|
|
tau: 0.005
|
|
target_entropy: auto
|
|
no_done_at_end: True
|
|
n_step: 1
|
|
sample_batch_size: 1
|
|
prioritized_replay: False
|
|
train_batch_size: 256
|
|
target_network_update_freq: 1
|
|
timesteps_per_iteration: 1000
|
|
learning_starts: 10000
|
|
exploration_enabled: True
|
|
optimization:
|
|
actor_learning_rate: 0.0003
|
|
critic_learning_rate: 0.0003
|
|
entropy_learning_rate: 0.0003
|
|
num_workers: 0
|
|
num_gpus: 0
|
|
clip_actions: False
|
|
normalize_actions: True
|
|
evaluation_interval: 1
|
|
metrics_smoothing_episodes: 5
|
|
|