ray/rllib/agents/trainer_template.py

141 lines
5.7 KiB
Python

import logging
from typing import Callable, Optional, List, Iterable
from ray.rllib.agents.trainer import Trainer, COMMON_CONFIG
from ray.rllib.evaluation.worker_set import WorkerSet
from ray.rllib.execution.rollout_ops import ParallelRollouts, ConcatBatches
from ray.rllib.execution.train_ops import TrainOneStep
from ray.rllib.execution.metric_ops import StandardMetricsReporting
from ray.rllib.policy import Policy
from ray.rllib.utils import add_mixins
from ray.rllib.utils.annotations import override, DeveloperAPI
from ray.rllib.utils.types import TrainerConfigDict, ResultDict
logger = logging.getLogger(__name__)
def default_execution_plan(workers: WorkerSet, config: TrainerConfigDict):
# Collects experiences in parallel from multiple RolloutWorker actors.
rollouts = ParallelRollouts(workers, mode="bulk_sync")
# Combine experiences batches until we hit `train_batch_size` in size.
# Then, train the policy on those experiences and update the workers.
train_op = rollouts \
.combine(ConcatBatches(
min_batch_size=config["train_batch_size"])) \
.for_each(TrainOneStep(workers))
# Add on the standard episode reward, etc. metrics reporting. This returns
# a LocalIterator[metrics_dict] representing metrics for each train step.
return StandardMetricsReporting(train_op, workers, config)
@DeveloperAPI
def build_trainer(
name: str,
default_policy: Optional[Policy],
*,
default_config: TrainerConfigDict = None,
validate_config: Callable[[TrainerConfigDict], None] = None,
get_policy_class: Callable[[TrainerConfigDict], Policy] = None,
before_init: Callable[[Trainer], None] = None,
after_init: Callable[[Trainer], None] = None,
before_evaluate_fn: Callable[[Trainer], None] = None,
mixins: List[type] = None,
execution_plan: Callable[[WorkerSet, TrainerConfigDict], Iterable[
ResultDict]] = default_execution_plan):
"""Helper function for defining a custom trainer.
Functions will be run in this order to initialize the trainer:
1. Config setup: validate_config, get_policy
2. Worker setup: before_init, execution_plan
3. Post setup: after_init
Arguments:
name (str): name of the trainer (e.g., "PPO")
default_policy (cls): the default Policy class to use
default_config (dict): The default config dict of the algorithm,
otherwise uses the Trainer default config.
validate_config (Optional[callable]): Optional callable that takes the
config to check for correctness. It may mutate the config as
needed.
get_policy_class (Optional[callable]): Optional callable that takes a
config and returns the policy class to override the default with.
before_init (Optional[callable]): Optional callable to run at the start
of trainer init that takes the trainer instance as argument.
after_init (Optional[callable]): Optional callable to run at the end of
trainer init that takes the trainer instance as argument.
before_evaluate_fn (Optional[callable]): callback to run before
evaluation. This takes the trainer instance as argument.
mixins (list): list of any class mixins for the returned trainer class.
These mixins will be applied in order and will have higher
precedence than the Trainer class.
execution_plan (func): Setup the distributed execution workflow.
Returns:
a Trainer instance that uses the specified args.
"""
original_kwargs = locals().copy()
base = add_mixins(Trainer, mixins)
class trainer_cls(base):
_name = name
_default_config = default_config or COMMON_CONFIG
_policy = default_policy
def __init__(self, config=None, env=None, logger_creator=None):
Trainer.__init__(self, config, env, logger_creator)
def _init(self, config, env_creator):
if validate_config:
validate_config(config)
if get_policy_class is None:
self._policy = default_policy
else:
self._policy = get_policy_class(config)
if before_init:
before_init(self)
# Creating all workers (excluding evaluation workers).
self.workers = self._make_workers(
env_creator, self._policy, config, self.config["num_workers"])
self.execution_plan = execution_plan
self.train_exec_impl = execution_plan(self.workers, config)
if after_init:
after_init(self)
@override(Trainer)
def step(self):
res = next(self.train_exec_impl)
return res
@override(Trainer)
def _before_evaluate(self):
if before_evaluate_fn:
before_evaluate_fn(self)
def __getstate__(self):
state = Trainer.__getstate__(self)
state["train_exec_impl"] = (
self.train_exec_impl.shared_metrics.get().save())
return state
def __setstate__(self, state):
Trainer.__setstate__(self, state)
self.train_exec_impl.shared_metrics.get().restore(
state["train_exec_impl"])
def with_updates(**overrides):
"""Build a copy of this trainer with the specified overrides.
Arguments:
overrides (dict): use this to override any of the arguments
originally passed to build_trainer() for this policy.
"""
return build_trainer(**dict(original_kwargs, **overrides))
trainer_cls.with_updates = staticmethod(with_updates)
trainer_cls.__name__ = name
trainer_cls.__qualname__ = name
return trainer_cls