ray/rllib/agents/marwil/tests/test_bc.py

65 lines
2.1 KiB
Python

import os
from pathlib import Path
import unittest
import ray
import ray.rllib.agents.marwil as marwil
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check_compute_single_action, \
framework_iterator
tf1, tf, tfv = try_import_tf()
class TestBC(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init()
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_bc_compilation_and_learning_from_offline_file(self):
"""Test whether a BCTrainer can be built with all frameworks.
And learns from a historic-data file.
"""
rllib_dir = Path(__file__).parent.parent.parent.parent
print("rllib dir={}".format(rllib_dir))
data_file = os.path.join(rllib_dir, "tests/data/cartpole/large.json")
print("data_file={} exists={}".format(data_file,
os.path.isfile(data_file)))
config = marwil.BC_DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
config["evaluation_num_workers"] = 1
config["evaluation_interval"] = 1
# Evaluate on actual environment.
config["evaluation_config"] = {"input": "sampler"}
# Learn from offline data.
config["input"] = [data_file]
num_iterations = 300
# Test for all frameworks.
for _ in framework_iterator(config, frameworks=("tf", "torch")):
trainer = marwil.BCTrainer(config=config, env="CartPole-v0")
for i in range(num_iterations):
eval_results = trainer.train()["evaluation"]
print("iter={} R={}".format(
i, eval_results["episode_reward_mean"]))
# Learn until some reward is reached on an actual live env.
if eval_results["episode_reward_mean"] > 60.0:
print("learnt!")
break
check_compute_single_action(
trainer, include_prev_action_reward=True)
trainer.stop()
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))