No description
Find a file
Robert Nishihara 4b00c029ac Remove numbuf from requirements for setup.py. (#54)
* Remove numbuf from requirements for setup.py.

* Update documentation.
2016-11-21 14:30:17 -08:00
.travis Changes to make tests pass on Travis. (#3) 2016-10-25 22:39:21 -07:00
cmake/Modules help cmake find right python interpreter on mac (#251) 2016-07-11 12:16:10 -07:00
doc Remove numbuf from requirements for setup.py. (#54) 2016-11-21 14:30:17 -08:00
docker Migrate repositories to ray-project. (#438) 2016-09-17 00:52:05 -07:00
examples Implement repr, hash, and richcompare for ObjectIDs. (#33) 2016-11-11 09:18:36 -08:00
lib/python Remove numbuf from requirements for setup.py. (#54) 2016-11-21 14:30:17 -08:00
numbuf Statically link arrow libraries when building numbuf (#53) 2016-11-21 02:14:13 -08:00
scripts Update worker.py and services.py to use plasma and the local scheduler. (#19) 2016-11-02 00:39:35 -07:00
src Fix pip install hanging by moving C tests out of build.sh. (#52) 2016-11-20 21:02:54 -08:00
test Global scheduler skeleton (#45) 2016-11-18 19:57:51 -08:00
thirdparty Changes to make tests pass on Travis. (#3) 2016-10-25 22:39:21 -07:00
vsprojects Update Windows support (#317) 2016-07-28 13:11:13 -07:00
webui Integration of Webui with Ray (#32) 2016-11-17 22:33:29 -08:00
.clang-format Changes to make tests pass on Travis. (#3) 2016-10-25 22:39:21 -07:00
.editorconfig Update Windows support (#317) 2016-07-28 13:11:13 -07:00
.gitignore Update .gitignore file. (#7) 2016-10-28 11:40:08 -07:00
.travis.yml Fix pip install hanging by moving C tests out of build.sh. (#52) 2016-11-20 21:02:54 -08:00
build-docker.sh Migrate repositories to ray-project. (#438) 2016-09-17 00:52:05 -07:00
build-webui.sh Global scheduler skeleton (#45) 2016-11-18 19:57:51 -08:00
build.sh Fix pip install hanging by moving C tests out of build.sh. (#52) 2016-11-20 21:02:54 -08:00
install-dependencies.sh switch from submodule to cloning arrow, travis fixes & Robert's comments 2016-11-19 17:38:36 -08:00
LICENSE Change license to Apache 2 (#20) 2016-11-01 23:19:06 -07:00
pylintrc adding pylint (#233) 2016-07-08 12:39:11 -07:00
Ray.sln Update Windows support (#317) 2016-07-28 13:11:13 -07:00
README.md Remove out-of-date documentation. (#40) 2016-11-12 19:34:22 -08:00

Ray

Build Status

Ray is an experimental distributed extension of Python. It is under development and not ready to be used.

The goal of Ray is to make it easy to write machine learning applications that run on a cluster while providing the development and debugging experience of working on a single machine.

Before jumping into the details, here's a simple Python example for doing a Monte Carlo estimation of pi (using multiple cores or potentially multiple machines).

import ray
import numpy as np

# Start a scheduler, an object store, and some workers.
ray.init(start_ray_local=True, num_workers=10)

# Define a remote function for estimating pi.
@ray.remote
def estimate_pi(n):
  x = np.random.uniform(size=n)
  y = np.random.uniform(size=n)
  return 4 * np.mean(x ** 2 + y ** 2 < 1)

# Launch 10 tasks, each of which estimates pi.
result_ids = []
for _ in range(10):
  result_ids.append(estimate_pi.remote(100))

# Fetch the results of the tasks and print their average.
estimate = np.mean(ray.get(result_ids))
print "Pi is approximately {}.".format(estimate)

Within the for loop, each call to estimate_pi.remote(100) sends a message to the scheduler asking it to schedule the task of running estimate_pi with the argument 100. This call returns right away without waiting for the actual estimation of pi to take place. Instead of returning a float, it returns an object ID, which represents the eventual output of the computation (this is a similar to a Future).

The call to ray.get(result_id) takes an object ID and returns the actual estimate of pi (waiting until the computation has finished if necessary).

Next Steps

Example Applications