mirror of
https://github.com/vale981/ray
synced 2025-03-10 13:26:39 -04:00

* add policy gradient example * fix typos * Minor changes plus some documentation. * Minor fixes.
26 lines
1.1 KiB
Python
26 lines
1.1 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import tensorflow as tf
|
|
import tensorflow.contrib.slim as slim
|
|
|
|
import numpy as np
|
|
|
|
def normc_initializer(std=1.0):
|
|
def _initializer(shape, dtype=None, partition_info=None): #pylint: disable=W0613
|
|
out = np.random.randn(*shape).astype(np.float32)
|
|
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
|
|
return tf.constant(out)
|
|
return _initializer
|
|
|
|
def fc_net(inputs, num_classes=10, logstd=False):
|
|
fc1 = slim.fully_connected(inputs, 128, weights_initializer=normc_initializer(1.0), scope="fc1")
|
|
fc2 = slim.fully_connected(fc1, 128, weights_initializer=normc_initializer(1.0), scope="fc2")
|
|
fc3 = slim.fully_connected(fc2, 128, weights_initializer=normc_initializer(1.0), scope="fc3")
|
|
fc4 = slim.fully_connected(fc3, num_classes, weights_initializer=normc_initializer(0.01), activation_fn=None, scope="fc4")
|
|
if logstd:
|
|
logstd = tf.get_variable(name="logstd", shape=[num_classes], initializer=tf.zeros_initializer)
|
|
return tf.concat(1, [fc4, logstd])
|
|
else:
|
|
return fc4
|