ray/rllib/examples/export/onnx_torch.py

68 lines
1.7 KiB
Python

from distutils.version import LooseVersion
import numpy as np
import ray
import ray.rllib.algorithms.ppo as ppo
import onnxruntime
import os
import shutil
import torch
# Configure our PPO.
config = ppo.DEFAULT_CONFIG.copy()
config["num_gpus"] = 0
config["num_workers"] = 1
config["framework"] = "torch"
outdir = "export_torch"
if os.path.exists(outdir):
shutil.rmtree(outdir)
np.random.seed(1234)
# We will run inference with this test batch
test_data = {
"obs": np.random.uniform(0, 1.0, size=(10, 4)).astype(np.float32),
"state_ins": np.array([0.0], dtype=np.float32),
}
# Start Ray and initialize a PPO Algorithm.
ray.init()
algo = ppo.PPO(config=config, env="CartPole-v0")
# You could train the model here
# algo.train()
# Let's run inference on the torch model
policy = algo.get_policy()
result_pytorch, _ = policy.model(
{
"obs": torch.tensor(test_data["obs"]),
}
)
# Evaluate tensor to fetch numpy array
result_pytorch = result_pytorch.detach().numpy()
# This line will export the model to ONNX
res = algo.export_policy_model(outdir, onnx=11)
# Import ONNX model
exported_model_file = os.path.join(outdir, "model.onnx")
# Start an inference session for the ONNX model
session = onnxruntime.InferenceSession(exported_model_file, None)
# Pass the same test batch to the ONNX model
if LooseVersion(torch.__version__) < LooseVersion("1.9.0"):
# In torch < 1.9.0 the second input/output name gets mixed up
test_data["state_outs"] = test_data.pop("state_ins")
result_onnx = session.run(["output"], test_data)
# These results should be equal!
print("PYTORCH", result_pytorch)
print("ONNX", result_onnx)
assert np.allclose(result_pytorch, result_onnx), "Model outputs are NOT equal. FAILED"
print("Model outputs are equal. PASSED")