mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00

update rllib example to use Tuner API. Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
303 lines
10 KiB
Python
303 lines
10 KiB
Python
"""An example of customizing PPO to leverage a centralized critic.
|
|
|
|
Here the model and policy are hard-coded to implement a centralized critic
|
|
for TwoStepGame, but you can adapt this for your own use cases.
|
|
|
|
Compared to simply running `rllib/examples/two_step_game.py --run=PPO`,
|
|
this centralized critic version reaches vf_explained_variance=1.0 more stably
|
|
since it takes into account the opponent actions as well as the policy's.
|
|
Note that this is also using two independent policies instead of weight-sharing
|
|
with one.
|
|
|
|
See also: centralized_critic_2.py for a simpler approach that instead
|
|
modifies the environment.
|
|
"""
|
|
|
|
import argparse
|
|
import numpy as np
|
|
from gym.spaces import Discrete
|
|
import os
|
|
|
|
import ray
|
|
from ray import air, tune
|
|
from ray.rllib.algorithms.ppo.ppo import PPO
|
|
from ray.rllib.algorithms.ppo.ppo_tf_policy import (
|
|
PPOTF1Policy,
|
|
PPOTF2Policy,
|
|
)
|
|
from ray.rllib.algorithms.ppo.ppo_torch_policy import PPOTorchPolicy
|
|
from ray.rllib.evaluation.postprocessing import compute_advantages, Postprocessing
|
|
from ray.rllib.examples.env.two_step_game import TwoStepGame
|
|
from ray.rllib.examples.models.centralized_critic_models import (
|
|
CentralizedCriticModel,
|
|
TorchCentralizedCriticModel,
|
|
)
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch
|
|
from ray.rllib.utils.numpy import convert_to_numpy
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
from ray.rllib.utils.tf_utils import explained_variance, make_tf_callable
|
|
from ray.rllib.utils.torch_utils import convert_to_torch_tensor
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
torch, nn = try_import_torch()
|
|
|
|
OPPONENT_OBS = "opponent_obs"
|
|
OPPONENT_ACTION = "opponent_action"
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.",
|
|
)
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-iters", type=int, default=100, help="Number of iterations to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-reward", type=float, default=7.99, help="Reward at which we stop training."
|
|
)
|
|
|
|
|
|
class CentralizedValueMixin:
|
|
"""Add method to evaluate the central value function from the model."""
|
|
|
|
def __init__(self):
|
|
if self.config["framework"] != "torch":
|
|
self.compute_central_vf = make_tf_callable(self.get_session())(
|
|
self.model.central_value_function
|
|
)
|
|
else:
|
|
self.compute_central_vf = self.model.central_value_function
|
|
|
|
|
|
# Grabs the opponent obs/act and includes it in the experience train_batch,
|
|
# and computes GAE using the central vf predictions.
|
|
def centralized_critic_postprocessing(
|
|
policy, sample_batch, other_agent_batches=None, episode=None
|
|
):
|
|
pytorch = policy.config["framework"] == "torch"
|
|
if (pytorch and hasattr(policy, "compute_central_vf")) or (
|
|
not pytorch and policy.loss_initialized()
|
|
):
|
|
assert other_agent_batches is not None
|
|
[(_, opponent_batch)] = list(other_agent_batches.values())
|
|
|
|
# also record the opponent obs and actions in the trajectory
|
|
sample_batch[OPPONENT_OBS] = opponent_batch[SampleBatch.CUR_OBS]
|
|
sample_batch[OPPONENT_ACTION] = opponent_batch[SampleBatch.ACTIONS]
|
|
|
|
# overwrite default VF prediction with the central VF
|
|
if args.framework == "torch":
|
|
sample_batch[SampleBatch.VF_PREDS] = (
|
|
policy.compute_central_vf(
|
|
convert_to_torch_tensor(
|
|
sample_batch[SampleBatch.CUR_OBS], policy.device
|
|
),
|
|
convert_to_torch_tensor(sample_batch[OPPONENT_OBS], policy.device),
|
|
convert_to_torch_tensor(
|
|
sample_batch[OPPONENT_ACTION], policy.device
|
|
),
|
|
)
|
|
.cpu()
|
|
.detach()
|
|
.numpy()
|
|
)
|
|
else:
|
|
sample_batch[SampleBatch.VF_PREDS] = convert_to_numpy(
|
|
policy.compute_central_vf(
|
|
sample_batch[SampleBatch.CUR_OBS],
|
|
sample_batch[OPPONENT_OBS],
|
|
sample_batch[OPPONENT_ACTION],
|
|
)
|
|
)
|
|
else:
|
|
# Policy hasn't been initialized yet, use zeros.
|
|
sample_batch[OPPONENT_OBS] = np.zeros_like(sample_batch[SampleBatch.CUR_OBS])
|
|
sample_batch[OPPONENT_ACTION] = np.zeros_like(sample_batch[SampleBatch.ACTIONS])
|
|
sample_batch[SampleBatch.VF_PREDS] = np.zeros_like(
|
|
sample_batch[SampleBatch.REWARDS], dtype=np.float32
|
|
)
|
|
|
|
completed = sample_batch["dones"][-1]
|
|
if completed:
|
|
last_r = 0.0
|
|
else:
|
|
last_r = sample_batch[SampleBatch.VF_PREDS][-1]
|
|
|
|
train_batch = compute_advantages(
|
|
sample_batch,
|
|
last_r,
|
|
policy.config["gamma"],
|
|
policy.config["lambda"],
|
|
use_gae=policy.config["use_gae"],
|
|
)
|
|
return train_batch
|
|
|
|
|
|
# Copied from PPO but optimizing the central value function.
|
|
def loss_with_central_critic(policy, base_policy, model, dist_class, train_batch):
|
|
# Save original value function.
|
|
vf_saved = model.value_function
|
|
|
|
# Calculate loss with a custom value function.
|
|
model.value_function = lambda: policy.model.central_value_function(
|
|
train_batch[SampleBatch.CUR_OBS],
|
|
train_batch[OPPONENT_OBS],
|
|
train_batch[OPPONENT_ACTION],
|
|
)
|
|
policy._central_value_out = model.value_function()
|
|
loss = base_policy.loss(model, dist_class, train_batch)
|
|
|
|
# Restore original value function.
|
|
model.value_function = vf_saved
|
|
|
|
return loss
|
|
|
|
|
|
def central_vf_stats(policy, train_batch):
|
|
# Report the explained variance of the central value function.
|
|
return {
|
|
"vf_explained_var": explained_variance(
|
|
train_batch[Postprocessing.VALUE_TARGETS], policy._central_value_out
|
|
)
|
|
}
|
|
|
|
|
|
def get_ccppo_policy(base):
|
|
class CCPPOTFPolicy(CentralizedValueMixin, base):
|
|
def __init__(self, observation_space, action_space, config):
|
|
base.__init__(self, observation_space, action_space, config)
|
|
CentralizedValueMixin.__init__(self)
|
|
|
|
@override(base)
|
|
def loss(self, model, dist_class, train_batch):
|
|
# Use super() to get to the base PPO policy.
|
|
# This special loss function utilizes a shared
|
|
# value function defined on self, and the loss function
|
|
# defined on PPO policies.
|
|
return loss_with_central_critic(
|
|
self, super(), model, dist_class, train_batch
|
|
)
|
|
|
|
@override(base)
|
|
def postprocess_trajectory(
|
|
self, sample_batch, other_agent_batches=None, episode=None
|
|
):
|
|
return centralized_critic_postprocessing(
|
|
self, sample_batch, other_agent_batches, episode
|
|
)
|
|
|
|
@override(base)
|
|
def stats_fn(self, train_batch: SampleBatch):
|
|
stats = super().stats_fn(train_batch)
|
|
stats.update(central_vf_stats(self, train_batch))
|
|
return stats
|
|
|
|
return CCPPOTFPolicy
|
|
|
|
|
|
CCPPOStaticGraphTFPolicy = get_ccppo_policy(PPOTF1Policy)
|
|
CCPPOEagerTFPolicy = get_ccppo_policy(PPOTF2Policy)
|
|
|
|
|
|
class CCPPOTorchPolicy(CentralizedValueMixin, PPOTorchPolicy):
|
|
def __init__(self, observation_space, action_space, config):
|
|
PPOTorchPolicy.__init__(self, observation_space, action_space, config)
|
|
CentralizedValueMixin.__init__(self)
|
|
|
|
@override(PPOTorchPolicy)
|
|
def loss(self, model, dist_class, train_batch):
|
|
return loss_with_central_critic(self, super(), model, dist_class, train_batch)
|
|
|
|
@override(PPOTorchPolicy)
|
|
def postprocess_trajectory(
|
|
self, sample_batch, other_agent_batches=None, episode=None
|
|
):
|
|
return centralized_critic_postprocessing(
|
|
self, sample_batch, other_agent_batches, episode
|
|
)
|
|
|
|
|
|
class CentralizedCritic(PPO):
|
|
@override(PPO)
|
|
def get_default_policy_class(self, config):
|
|
if config["framework"] == "torch":
|
|
return CCPPOTorchPolicy
|
|
elif config["framework"] == "tf":
|
|
return CCPPOStaticGraphTFPolicy
|
|
else:
|
|
return CCPPOEagerTFPolicy
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ray.init()
|
|
args = parser.parse_args()
|
|
|
|
ModelCatalog.register_custom_model(
|
|
"cc_model",
|
|
TorchCentralizedCriticModel
|
|
if args.framework == "torch"
|
|
else CentralizedCriticModel,
|
|
)
|
|
|
|
config = {
|
|
"env": TwoStepGame,
|
|
"batch_mode": "complete_episodes",
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"num_workers": 0,
|
|
"multiagent": {
|
|
"policies": {
|
|
"pol1": (
|
|
None,
|
|
Discrete(6),
|
|
TwoStepGame.action_space,
|
|
{
|
|
"framework": args.framework,
|
|
},
|
|
),
|
|
"pol2": (
|
|
None,
|
|
Discrete(6),
|
|
TwoStepGame.action_space,
|
|
{
|
|
"framework": args.framework,
|
|
},
|
|
),
|
|
},
|
|
"policy_mapping_fn": (lambda aid, **kwargs: "pol1" if aid == 0 else "pol2"),
|
|
},
|
|
"model": {
|
|
"custom_model": "cc_model",
|
|
},
|
|
"framework": args.framework,
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
tuner = tune.Tuner(
|
|
CentralizedCritic,
|
|
param_space=config,
|
|
run_config=air.RunConfig(stop=stop, verbose=1),
|
|
)
|
|
results = tuner.fit()
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|