mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

Removes all ML related code from `ray.util` Removes: - `ray.util.xgboost` - `ray.util.lightgbm` - `ray.util.horovod` - `ray.util.ray_lightning` Moves `ray.util.ml_utils` to other locations Closes #23900 Signed-off-by: Amog Kamsetty <amogkamsetty@yahoo.com> Signed-off-by: Kai Fricke <kai@anyscale.com> Co-authored-by: Kai Fricke <kai@anyscale.com>
169 lines
4.4 KiB
Python
169 lines
4.4 KiB
Python
import glob
|
|
import os
|
|
import time
|
|
|
|
import ray
|
|
|
|
from xgboost_ray import (
|
|
train,
|
|
RayDMatrix,
|
|
RayFileType,
|
|
RayDeviceQuantileDMatrix,
|
|
RayParams,
|
|
)
|
|
from xgboost_ray.session import get_actor_rank, put_queue
|
|
from xgboost.callback import TrainingCallback
|
|
from xgboost.rabit import get_world_size
|
|
|
|
if "OMP_NUM_THREADS" in os.environ:
|
|
del os.environ["OMP_NUM_THREADS"]
|
|
|
|
|
|
@ray.remote
|
|
class FailureState:
|
|
def __init__(self):
|
|
self._failed_ids = set()
|
|
|
|
def set_failed(self, id):
|
|
if id in self._failed_ids:
|
|
return False
|
|
self._failed_ids.add(id)
|
|
return True
|
|
|
|
def has_failed(self, id):
|
|
return id in self._failed_ids
|
|
|
|
|
|
class FailureInjection(TrainingCallback):
|
|
def __init__(self, id, state, ranks, iteration):
|
|
self._id = id
|
|
self._state = state
|
|
self._ranks = ranks or []
|
|
self._iteration = iteration
|
|
super(FailureInjection).__init__()
|
|
|
|
def after_iteration(self, model, epoch, evals_log):
|
|
if epoch == self._iteration:
|
|
rank = get_actor_rank()
|
|
if rank in self._ranks:
|
|
if not ray.get(self._state.has_failed.remote(self._id)):
|
|
success = ray.get(self._state.set_failed.remote(self._id))
|
|
if not success:
|
|
# Another rank is already about to fail
|
|
return
|
|
|
|
pid = os.getpid()
|
|
print(f"Killing process: {pid} for actor rank {rank}")
|
|
time.sleep(1)
|
|
os.kill(pid, 9)
|
|
|
|
|
|
class TrackingCallback(TrainingCallback):
|
|
def before_iteration(self, model, epoch, evals_log):
|
|
if get_actor_rank() == 3:
|
|
print(f"[Rank {get_actor_rank()}] I am at iteration {epoch}")
|
|
put_queue(get_world_size())
|
|
|
|
|
|
def get_parquet_files(path, num_files=0):
|
|
path = os.path.expanduser(path)
|
|
if not os.path.exists(path):
|
|
raise ValueError(f"Path does not exist: {path}")
|
|
|
|
files = sorted(glob.glob(f"{path}/**/*.parquet"))
|
|
while num_files > len(files):
|
|
files = files + files
|
|
return files[0:num_files]
|
|
|
|
|
|
def train_ray(
|
|
path,
|
|
num_workers,
|
|
num_boost_rounds,
|
|
num_files=0,
|
|
regression=False,
|
|
use_gpu=False,
|
|
ray_params=None,
|
|
xgboost_params=None,
|
|
**kwargs,
|
|
):
|
|
if not isinstance(path, list):
|
|
path = get_parquet_files(path, num_files=num_files)
|
|
|
|
use_device_matrix = False
|
|
if use_gpu:
|
|
try:
|
|
import cupy # noqa: F401
|
|
|
|
use_device_matrix = True
|
|
except ImportError:
|
|
use_device_matrix = False
|
|
|
|
if use_device_matrix:
|
|
dtrain = RayDeviceQuantileDMatrix(
|
|
path,
|
|
num_actors=num_workers,
|
|
label="labels",
|
|
ignore=["partition"],
|
|
filetype=RayFileType.PARQUET,
|
|
)
|
|
else:
|
|
dtrain = RayDMatrix(
|
|
path,
|
|
num_actors=num_workers,
|
|
label="labels",
|
|
ignore=["partition"],
|
|
filetype=RayFileType.PARQUET,
|
|
)
|
|
|
|
config = {"tree_method": "hist" if not use_gpu else "gpu_hist"}
|
|
|
|
if not regression:
|
|
# Classification
|
|
config.update(
|
|
{
|
|
"objective": "binary:logistic",
|
|
"eval_metric": ["logloss", "error"],
|
|
}
|
|
)
|
|
else:
|
|
# Regression
|
|
config.update(
|
|
{
|
|
"objective": "reg:squarederror",
|
|
"eval_metric": ["logloss", "rmse"],
|
|
}
|
|
)
|
|
|
|
if xgboost_params:
|
|
config.update(xgboost_params)
|
|
|
|
start = time.time()
|
|
evals_result = {}
|
|
additional_results = {}
|
|
bst = train(
|
|
config,
|
|
dtrain,
|
|
evals_result=evals_result,
|
|
additional_results=additional_results,
|
|
num_boost_round=num_boost_rounds,
|
|
ray_params=ray_params
|
|
or RayParams(
|
|
max_actor_restarts=2,
|
|
num_actors=num_workers,
|
|
cpus_per_actor=1,
|
|
gpus_per_actor=1 if not use_gpu else 1,
|
|
),
|
|
evals=[(dtrain, "train")],
|
|
**kwargs,
|
|
)
|
|
taken = time.time() - start
|
|
print(f"TRAIN TIME TAKEN: {taken:.2f} seconds")
|
|
|
|
out_file = os.path.expanduser(
|
|
"~/benchmark_{}.xgb".format("cpu" if not use_gpu else "gpu")
|
|
)
|
|
bst.save_model(out_file)
|
|
|
|
print("Final training error: {:.4f}".format(evals_result["train"]["error"][-1]))
|
|
return bst, additional_results, taken
|