ray/release/data_processing_tests/workloads/streaming_shuffle.py
Kai Fricke 1d52ab819f
[release] release 1.3.0 results and test updates (#15366)
Convert a number of release tests and add logs for release 1.3.0
2021-05-04 22:10:04 +01:00

179 lines
4.8 KiB
Python

import time
import json
import ray
import numpy as np
from typing import List
from ray import ObjectRef
from tqdm import tqdm
from ray.cluster_utils import Cluster
num_nodes = 4
num_cpus = 4
partition_size = int(500e6) # 500MB
# Number of map & reduce tasks == num_partitions.
# Number of objects == num_partitions ^ 2.
num_partitions = 200
# There are two int64 per row, so we divide by 8 * 2 bytes.
rows_per_partition = partition_size // (8 * 2)
object_store_size = 20 * 1024 * 1024 * 1024 # 20G
system_config = {
"automatic_object_spilling_enabled": True,
"max_io_workers": 1,
"object_spilling_config": json.dumps(
{
"type": "filesystem",
"params": {
"directory_path": "/tmp/spill"
}
},
separators=(",", ":"))
}
def display_spilling_info(address):
state = ray.state.GlobalState()
state._initialize_global_state(address,
ray.ray_constants.REDIS_DEFAULT_PASSWORD)
raylet = state.node_table()[0]
memory_summary = ray.internal.internal_api.memory_summary(
f"{raylet['NodeManagerAddress']}:{raylet['NodeManagerPort']}")
for line in memory_summary.split("\n"):
if "Spilled" in line:
print(line)
if "Restored" in line:
print(line)
print("\n\n")
@ray.remote
class Counter:
def __init__(self):
self.num_map = 0
self.num_reduce = 0
def inc(self):
self.num_map += 1
# print("Num map tasks finished", self.num_map)
def inc2(self):
self.num_reduce += 1
# print("Num reduce tasks finished", self.num_reduce)
def finish(self):
pass
# object store peak memory: O(partition size / num partitions)
# heap memory: O(partition size / num partitions)
@ray.remote(num_returns=num_partitions)
def shuffle_map_streaming(i,
counter_handle=None) -> List[ObjectRef[np.ndarray]]:
outputs = [
ray.put(
np.ones((rows_per_partition // num_partitions, 2), dtype=np.int64))
for _ in range(num_partitions)
]
counter_handle.inc.remote()
return outputs
# object store peak memory: O(partition size / num partitions)
# heap memory: O(partition size) -- TODO can be reduced too
@ray.remote
def shuffle_reduce_streaming(*inputs, counter_handle=None) -> np.ndarray:
out = None
for chunk in inputs:
if out is None:
out = ray.get(chunk)
else:
out = np.concatenate([out, ray.get(chunk)])
counter_handle.inc2.remote()
return out
shuffle_map = shuffle_map_streaming
shuffle_reduce = shuffle_reduce_streaming
def run_shuffle():
counter = Counter.remote()
start = time.time()
print("start map")
shuffle_map_out = [
shuffle_map.remote(i, counter_handle=counter)
for i in range(num_partitions)
]
# wait until all map is done before reduce phase.
for out in tqdm(shuffle_map_out):
ray.get(out)
# Start reducing
shuffle_reduce_out = [
shuffle_reduce.remote(
*[shuffle_map_out[i][j] for i in range(num_partitions)],
counter_handle=counter) for j in range(num_partitions)
]
print("start shuffle.")
pbar = tqdm(total=num_partitions)
total_rows = 0
ready, unready = ray.wait(shuffle_reduce_out)
while unready:
ready, unready = ray.wait(unready)
for output in ready:
pbar.update(1)
total_rows += ray.get(output).shape[0]
delta = time.time() - start
ray.get(counter.finish.remote())
print("Shuffled", total_rows * 8 * 2, "bytes in", delta,
"seconds in a single node.\n")
def run_single_node():
address = ray.init(
num_cpus=num_cpus * num_nodes,
object_store_memory=object_store_size,
_system_config=system_config)
# Run shuffle.
print(
"\n\nTest streaming shuffle with a single node.\n"
f"Shuffle size: {partition_size * num_partitions / 1024 / 1024 / 1024}"
"GB")
run_shuffle()
time.sleep(5)
display_spilling_info(address["redis_address"])
ray.shutdown()
time.sleep(5)
def run_multi_nodes():
c = Cluster()
c.add_node(
num_cpus=4,
object_store_memory=object_store_size,
_system_config=system_config)
ray.init(address=c.address)
for _ in range(num_nodes - 1): # subtract a head node.
c.add_node(num_cpus=4, object_store_memory=object_store_size)
c.wait_for_nodes()
# Run shuffle.
print(
f"\n\nTest streaming shuffle with {num_nodes} nodes.\n"
f"Shuffle size: {partition_size * num_partitions / 1024 / 1024 / 1024}"
"GB")
run_shuffle()
time.sleep(5)
display_spilling_info(c.address)
ray.shutdown()
c.shutdown()
time.sleep(5)
run_single_node()
run_multi_nodes()