mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
58 lines
2 KiB
Python
58 lines
2 KiB
Python
import argparse
|
|
import os
|
|
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--run", type=str, default="PPO")
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
parser.add_argument(
|
|
"--framework", choices=["tf2", "tf", "tfe", "torch"], default="tf")
|
|
parser.add_argument("--as-test", action="store_true")
|
|
parser.add_argument("--stop-iters", type=int, default=200)
|
|
parser.add_argument("--stop-timesteps", type=int, default=100000)
|
|
parser.add_argument("--stop-reward", type=float, default=100.0)
|
|
|
|
if __name__ == "__main__":
|
|
import ray
|
|
from ray import tune
|
|
|
|
args = parser.parse_args()
|
|
|
|
ray.init(num_cpus=args.num_cpus or None)
|
|
|
|
config = {
|
|
"env": "CartPole-v0",
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"model": {
|
|
"vf_share_layers": True,
|
|
},
|
|
"framework": args.framework,
|
|
# Run with tracing enabled for tfe/tf2.
|
|
"eager_tracing": args.framework in ["tfe", "tf2"],
|
|
# Parallel evaluation+training config.
|
|
# Use two evaluation workers.
|
|
"evaluation_num_workers": 2,
|
|
# Evaluate every other training iteration (together
|
|
# with every other call to Trainer.train()).
|
|
"evaluation_interval": 2,
|
|
# Run for 50 episodes (25 per eval worker and per
|
|
# evaluation round). The longer it takes to evaluate, the more
|
|
# sense it makes to use `evaluation_parallel_to_training=True`.
|
|
"evaluation_num_episodes": 10,
|
|
# Switch on evaluation in parallel with training.
|
|
"evaluation_parallel_to_training": True,
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
results = tune.run(args.run, config=config, stop=stop, verbose=2)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
ray.shutdown()
|