ray/doc/source/mars-on-ray.rst
He Kaisheng 2bca5fd663
Add documentation for Mars on Ray (#10468)
* Add documentation for Mars on Ray

* Update mars_on_ray.rst

* refine according to comments

Co-authored-by: hekaisheng <kaisheng.hks@alibaba-inc.com>
Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-09-03 09:07:33 -07:00

56 lines
1.4 KiB
ReStructuredText

Mars on Ray
============
.. _`issue on GitHub`: https://github.com/mars-project/mars/issues
`Mars`_ Mars is a tensor-based unified framework for large-scale data computation which scales Numpy, Pandas and Scikit-learn.
Mars on Ray makes it easy to scale your programs with a Ray cluster.
.. note::
This API is experimental in Mars. If you encounter any bugs, please file an `issue on GitHub`_.
.. _`Mars`: https://docs.pymars.org
Installation
-------------
You can simply install Mars via pip:
.. code-block:: bash
pip install pymars>=0.6.0a1
Getting started
----------------
It's easy to run Mars jobs on a Ray cluster. Use ``from mars.session import new_session``
and run ``new_session(backend='ray').as_default()``; this will create
a Mars session for Ray as the default session, and then all Mars tasks will be
submitted to Ray. Arguments will be passed to ``ray.init()`` when
creating a Mars session like this:
``new_session(backend='ray', address=<address>, num_cpus=<num_cpus>)``.
.. code-block:: python
from mars.session import new_session
ray_session = new_session(backend='ray').as_default()
import mars.dataframe as md
import mars.tensor as mt
t = mt.random.rand(100, 4, chunk_size=30)
df = md.DataFrame(t, columns=list('abcd'))
print(df.describe().execute())
.. warning::
`Mars remote API`_ is not available for now.
.. _`Mars remote API`: https://docs.pymars.org/en/latest/getting_started/remote.html