mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

* WIP. * Fixes. * LINT. * WIP. * WIP. * Fixes. * Fixes. * Fixes. * Fixes. * WIP. * Fixes. * Test * Fix. * Fixes and LINT. * Fixes and LINT. * LINT.
177 lines
7.6 KiB
Python
177 lines
7.6 KiB
Python
import numpy as np
|
|
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.exploration.gaussian_noise import GaussianNoise
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch, \
|
|
get_variable
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
torch, _ = try_import_torch()
|
|
|
|
|
|
class OrnsteinUhlenbeckNoise(GaussianNoise):
|
|
"""An exploration that adds Ornstein-Uhlenbeck noise to continuous actions.
|
|
|
|
If explore=True, returns sampled actions plus a noise term X,
|
|
which changes according to this formula:
|
|
Xt+1 = -theta*Xt + sigma*N[0,stddev], where theta, sigma and stddev are
|
|
constants. Also, some completely random period is possible at the
|
|
beginning.
|
|
If explore=False, returns the deterministic action.
|
|
"""
|
|
|
|
def __init__(self,
|
|
action_space,
|
|
*,
|
|
framework: str,
|
|
ou_theta=0.15,
|
|
ou_sigma=0.2,
|
|
ou_base_scale=0.1,
|
|
random_timesteps=1000,
|
|
initial_scale=1.0,
|
|
final_scale=0.02,
|
|
scale_timesteps=10000,
|
|
scale_schedule=None,
|
|
**kwargs):
|
|
"""Initializes an Ornstein-Uhlenbeck Exploration object.
|
|
|
|
Args:
|
|
action_space (Space): The gym action space used by the environment.
|
|
ou_theta (float): The theta parameter of the Ornstein-Uhlenbeck
|
|
process.
|
|
ou_sigma (float): The sigma parameter of the Ornstein-Uhlenbeck
|
|
process.
|
|
ou_base_scale (float): A fixed scaling factor, by which all OU-
|
|
noise is multiplied. NOTE: This is on top of the parent
|
|
GaussianNoise's scaling.
|
|
random_timesteps (int): The number of timesteps for which to act
|
|
completely randomly. Only after this number of timesteps, the
|
|
`self.scale` annealing process will start (see below).
|
|
initial_scale (float): The initial scaling weight to multiply
|
|
the noise with.
|
|
final_scale (float): The final scaling weight to multiply
|
|
the noise with.
|
|
scale_timesteps (int): The timesteps over which to linearly anneal
|
|
the scaling factor (after(!) having used random actions for
|
|
`random_timesteps` steps.
|
|
scale_schedule (Optional[Schedule]): An optional Schedule object
|
|
to use (instead of constructing one from the given parameters).
|
|
framework (Optional[str]): One of None, "tf", "torch".
|
|
"""
|
|
super().__init__(
|
|
action_space,
|
|
framework=framework,
|
|
random_timesteps=random_timesteps,
|
|
initial_scale=initial_scale,
|
|
final_scale=final_scale,
|
|
scale_timesteps=scale_timesteps,
|
|
scale_schedule=scale_schedule,
|
|
stddev=1.0, # Force `self.stddev` to 1.0.
|
|
**kwargs)
|
|
self.ou_theta = ou_theta
|
|
self.ou_sigma = ou_sigma
|
|
self.ou_base_scale = ou_base_scale
|
|
|
|
# The current OU-state value (gets updated each time, an eploration
|
|
# action is computed).
|
|
self.ou_state = get_variable(
|
|
np.array(self.action_space.low.size * [.0], dtype=np.float32),
|
|
framework=self.framework,
|
|
tf_name="ou_state",
|
|
torch_tensor=True,
|
|
device=self.device)
|
|
|
|
@override(GaussianNoise)
|
|
def _get_tf_exploration_action_op(self, action_dist, explore, timestep):
|
|
ts = timestep if timestep is not None else self.last_timestep
|
|
scale = self.scale_schedule(ts)
|
|
|
|
# The deterministic actions (if explore=False).
|
|
deterministic_actions = action_dist.deterministic_sample()
|
|
|
|
# Apply base-scaled and time-annealed scaled OU-noise to
|
|
# deterministic actions.
|
|
gaussian_sample = tf.random.normal(
|
|
shape=[self.action_space.low.size], stddev=self.stddev)
|
|
ou_new = self.ou_theta * -self.ou_state + \
|
|
self.ou_sigma * gaussian_sample
|
|
ou_state_new = tf1.assign_add(self.ou_state, ou_new)
|
|
high_m_low = self.action_space.high - self.action_space.low
|
|
high_m_low = tf.where(
|
|
tf.math.is_inf(high_m_low), tf.ones_like(high_m_low), high_m_low)
|
|
noise = scale * self.ou_base_scale * ou_state_new * high_m_low
|
|
stochastic_actions = tf.clip_by_value(
|
|
deterministic_actions + noise,
|
|
self.action_space.low * tf.ones_like(deterministic_actions),
|
|
self.action_space.high * tf.ones_like(deterministic_actions))
|
|
|
|
# Stochastic actions could either be: random OR action + noise.
|
|
random_actions, _ = \
|
|
self.random_exploration.get_tf_exploration_action_op(
|
|
action_dist, explore)
|
|
exploration_actions = tf.cond(
|
|
pred=ts <= self.random_timesteps,
|
|
true_fn=lambda: random_actions,
|
|
false_fn=lambda: stochastic_actions)
|
|
|
|
# Chose by `explore` (main exploration switch).
|
|
action = tf.cond(
|
|
pred=tf.constant(explore, dtype=tf.bool)
|
|
if isinstance(explore, bool) else explore,
|
|
true_fn=lambda: exploration_actions,
|
|
false_fn=lambda: deterministic_actions)
|
|
# Logp=always zero.
|
|
batch_size = tf.shape(deterministic_actions)[0]
|
|
logp = tf.zeros(shape=(batch_size,), dtype=tf.float32)
|
|
|
|
# Increment `last_timestep` by 1 (or set to `timestep`).
|
|
assign_op = (
|
|
tf1.assign_add(self.last_timestep, 1) if timestep is None else
|
|
tf1.assign(self.last_timestep, timestep))
|
|
with tf1.control_dependencies([assign_op, ou_state_new]):
|
|
return action, logp
|
|
|
|
@override(GaussianNoise)
|
|
def _get_torch_exploration_action(self, action_dist, explore, timestep):
|
|
# Set last timestep or (if not given) increase by one.
|
|
self.last_timestep = timestep if timestep is not None else \
|
|
self.last_timestep + 1
|
|
|
|
# Apply exploration.
|
|
if explore:
|
|
# Random exploration phase.
|
|
if self.last_timestep <= self.random_timesteps:
|
|
action, _ = \
|
|
self.random_exploration.get_torch_exploration_action(
|
|
action_dist, explore=True)
|
|
# Apply base-scaled and time-annealed scaled OU-noise to
|
|
# deterministic actions.
|
|
else:
|
|
det_actions = action_dist.deterministic_sample()
|
|
scale = self.scale_schedule(self.last_timestep)
|
|
gaussian_sample = scale * torch.normal(
|
|
mean=torch.zeros(self.ou_state.size()), std=1.0) \
|
|
.to(self.device)
|
|
ou_new = self.ou_theta * -self.ou_state + \
|
|
self.ou_sigma * gaussian_sample
|
|
self.ou_state += ou_new
|
|
high_m_low = torch.from_numpy(
|
|
self.action_space.high - self.action_space.low). \
|
|
to(self.device)
|
|
high_m_low = torch.where(
|
|
torch.isinf(high_m_low),
|
|
torch.ones_like(high_m_low).to(self.device), high_m_low)
|
|
noise = scale * self.ou_base_scale * self.ou_state * high_m_low
|
|
action = torch.clamp(det_actions + noise,
|
|
self.action_space.low[0],
|
|
self.action_space.high[0])
|
|
|
|
# No exploration -> Return deterministic actions.
|
|
else:
|
|
action = action_dist.deterministic_sample()
|
|
|
|
# Logp=always zero.
|
|
logp = torch.zeros(
|
|
(action.size()[0], ), dtype=torch.float32, device=self.device)
|
|
|
|
return action, logp
|