ray/rllib/agents/pg/tests/test_pg.py

121 lines
4.6 KiB
Python

import numpy as np
import unittest
import ray
import ray.rllib.agents.pg as pg
from ray.rllib.evaluation.postprocessing import Postprocessing
from ray.rllib.models.tf.tf_action_dist import Categorical
from ray.rllib.models.torch.torch_action_dist import TorchCategorical
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils import check, check_compute_single_action, fc, \
framework_iterator
class TestPG(unittest.TestCase):
def setUp(self):
ray.init()
def tearDown(self):
ray.shutdown()
def test_pg_compilation(self):
"""Test whether a PGTrainer can be built with both frameworks."""
config = pg.DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
num_iterations = 2
for _ in framework_iterator(config):
trainer = pg.PGTrainer(config=config, env="CartPole-v0")
for i in range(num_iterations):
trainer.train()
check_compute_single_action(
trainer, include_prev_action_reward=True)
def test_pg_loss_functions(self):
"""Tests the PG loss function math."""
config = pg.DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
config["gamma"] = 0.99
config["model"]["fcnet_hiddens"] = [10]
config["model"]["fcnet_activation"] = "linear"
# Fake CartPole episode of n time steps.
train_batch = {
SampleBatch.CUR_OBS: np.array([[0.1, 0.2, 0.3,
0.4], [0.5, 0.6, 0.7, 0.8],
[0.9, 1.0, 1.1, 1.2]]),
SampleBatch.ACTIONS: np.array([0, 1, 1]),
SampleBatch.PREV_ACTIONS: np.array([1, 0, 1]),
SampleBatch.REWARDS: np.array([1.0, 1.0, 1.0]),
SampleBatch.PREV_REWARDS: np.array([-1.0, -1.0, -1.0]),
SampleBatch.DONES: np.array([False, False, True])
}
for fw, sess in framework_iterator(config, session=True):
dist_cls = (Categorical if fw != "torch" else TorchCategorical)
trainer = pg.PGTrainer(config=config, env="CartPole-v0")
policy = trainer.get_policy()
vars = policy.model.trainable_variables()
if fw == "tf":
vars = policy.get_session().run(vars)
# Post-process (calculate simple (non-GAE) advantages) and attach
# to train_batch dict.
# A = [0.99^2 * 1.0 + 0.99 * 1.0 + 1.0, 0.99 * 1.0 + 1.0, 1.0] =
# [2.9701, 1.99, 1.0]
train_batch = pg.post_process_advantages(policy, train_batch)
if fw == "torch":
train_batch = policy._lazy_tensor_dict(train_batch)
# Check Advantage values.
check(train_batch[Postprocessing.ADVANTAGES], [2.9701, 1.99, 1.0])
# Actual loss results.
if fw == "tf":
results = policy.get_session().run(
policy._loss,
feed_dict=policy._get_loss_inputs_dict(
train_batch, shuffle=False))
else:
results = (pg.pg_tf_loss if fw == "tfe" else pg.pg_torch_loss)(
policy,
policy.model,
dist_class=dist_cls,
train_batch=train_batch)
# Calculate expected results.
if fw != "torch":
expected_logits = fc(
fc(train_batch[SampleBatch.CUR_OBS],
vars[0],
vars[1],
framework=fw),
vars[2],
vars[3],
framework=fw)
else:
expected_logits = fc(
fc(train_batch[SampleBatch.CUR_OBS],
vars[2],
vars[3],
framework=fw),
vars[0],
vars[1],
framework=fw)
expected_logp = dist_cls(expected_logits, policy.model).logp(
train_batch[SampleBatch.ACTIONS])
if sess:
expected_logp = sess.run(expected_logp)
else:
expected_logp = expected_logp.numpy()
expected_loss = -np.mean(
expected_logp *
(train_batch[Postprocessing.ADVANTAGES] if fw != "torch" else
train_batch[Postprocessing.ADVANTAGES].numpy()))
check(results, expected_loss, decimals=4)
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))