mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00

* bulk rename * deprecation warn * update doc * update fig * line length * rename * make pytest comptaible * fix test * fi sys * rename * wip * fix more * lint * update svg * comments * lint * fix use of batch steps
168 lines
6.4 KiB
Python
168 lines
6.4 KiB
Python
from ray.rllib.agents.a3c.a3c_tf_policy import A3CTFPolicy
|
|
from ray.rllib.agents.impala.vtrace_policy import VTraceTFPolicy
|
|
from ray.rllib.agents.trainer import Trainer, with_common_config
|
|
from ray.rllib.agents.trainer_template import build_trainer
|
|
from ray.rllib.optimizers import AsyncSamplesOptimizer
|
|
from ray.rllib.optimizers.aso_tree_aggregator import TreeAggregator
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.tune.trainable import Trainable
|
|
from ray.tune.resources import Resources
|
|
|
|
# yapf: disable
|
|
# __sphinx_doc_begin__
|
|
DEFAULT_CONFIG = with_common_config({
|
|
# V-trace params (see vtrace.py).
|
|
"vtrace": True,
|
|
"vtrace_clip_rho_threshold": 1.0,
|
|
"vtrace_clip_pg_rho_threshold": 1.0,
|
|
# System params.
|
|
#
|
|
# == Overview of data flow in IMPALA ==
|
|
# 1. Policy evaluation in parallel across `num_workers` actors produces
|
|
# batches of size `rollout_fragment_length * num_envs_per_worker`.
|
|
# 2. If enabled, the replay buffer stores and produces batches of size
|
|
# `rollout_fragment_length * num_envs_per_worker`.
|
|
# 3. If enabled, the minibatch ring buffer stores and replays batches of
|
|
# size `train_batch_size` up to `num_sgd_iter` times per batch.
|
|
# 4. The learner thread executes data parallel SGD across `num_gpus` GPUs
|
|
# on batches of size `train_batch_size`.
|
|
#
|
|
"rollout_fragment_length": 50,
|
|
"train_batch_size": 500,
|
|
"min_iter_time_s": 10,
|
|
"num_workers": 2,
|
|
# number of GPUs the learner should use.
|
|
"num_gpus": 1,
|
|
# set >1 to load data into GPUs in parallel. Increases GPU memory usage
|
|
# proportionally with the number of buffers.
|
|
"num_data_loader_buffers": 1,
|
|
# how many train batches should be retained for minibatching. This conf
|
|
# only has an effect if `num_sgd_iter > 1`.
|
|
"minibatch_buffer_size": 1,
|
|
# number of passes to make over each train batch
|
|
"num_sgd_iter": 1,
|
|
# set >0 to enable experience replay. Saved samples will be replayed with
|
|
# a p:1 proportion to new data samples.
|
|
"replay_proportion": 0.0,
|
|
# number of sample batches to store for replay. The number of transitions
|
|
# saved total will be (replay_buffer_num_slots * rollout_fragment_length).
|
|
"replay_buffer_num_slots": 0,
|
|
# max queue size for train batches feeding into the learner
|
|
"learner_queue_size": 16,
|
|
# wait for train batches to be available in minibatch buffer queue
|
|
# this many seconds. This may need to be increased e.g. when training
|
|
# with a slow environment
|
|
"learner_queue_timeout": 300,
|
|
# level of queuing for sampling.
|
|
"max_sample_requests_in_flight_per_worker": 2,
|
|
# max number of workers to broadcast one set of weights to
|
|
"broadcast_interval": 1,
|
|
# use intermediate actors for multi-level aggregation. This can make sense
|
|
# if ingesting >2GB/s of samples, or if the data requires decompression.
|
|
"num_aggregation_workers": 0,
|
|
|
|
# Learning params.
|
|
"grad_clip": 40.0,
|
|
# either "adam" or "rmsprop"
|
|
"opt_type": "adam",
|
|
"lr": 0.0005,
|
|
"lr_schedule": None,
|
|
# rmsprop considered
|
|
"decay": 0.99,
|
|
"momentum": 0.0,
|
|
"epsilon": 0.1,
|
|
# balancing the three losses
|
|
"vf_loss_coeff": 0.5,
|
|
"entropy_coeff": 0.01,
|
|
"entropy_coeff_schedule": None,
|
|
|
|
# use fake (infinite speed) sampler for testing
|
|
"_fake_sampler": False,
|
|
})
|
|
# __sphinx_doc_end__
|
|
# yapf: enable
|
|
|
|
|
|
def choose_policy(config):
|
|
if config["vtrace"]:
|
|
return VTraceTFPolicy
|
|
else:
|
|
return A3CTFPolicy
|
|
|
|
|
|
def validate_config(config):
|
|
# PyTorch check.
|
|
if config["use_pytorch"]:
|
|
raise ValueError(
|
|
"IMPALA does not support PyTorch yet! Use tf instead.")
|
|
if config["entropy_coeff"] < 0:
|
|
raise DeprecationWarning("entropy_coeff must be >= 0")
|
|
|
|
|
|
def defer_make_workers(trainer, env_creator, policy, config):
|
|
# Defer worker creation to after the optimizer has been created.
|
|
return trainer._make_workers(env_creator, policy, config, 0)
|
|
|
|
|
|
def make_aggregators_and_optimizer(workers, config):
|
|
if config["num_aggregation_workers"] > 0:
|
|
# Create co-located aggregator actors first for placement pref
|
|
aggregators = TreeAggregator.precreate_aggregators(
|
|
config["num_aggregation_workers"])
|
|
else:
|
|
aggregators = None
|
|
workers.add_workers(config["num_workers"])
|
|
|
|
optimizer = AsyncSamplesOptimizer(
|
|
workers,
|
|
lr=config["lr"],
|
|
num_gpus=config["num_gpus"],
|
|
rollout_fragment_length=config["rollout_fragment_length"],
|
|
train_batch_size=config["train_batch_size"],
|
|
replay_buffer_num_slots=config["replay_buffer_num_slots"],
|
|
replay_proportion=config["replay_proportion"],
|
|
num_data_loader_buffers=config["num_data_loader_buffers"],
|
|
max_sample_requests_in_flight_per_worker=config[
|
|
"max_sample_requests_in_flight_per_worker"],
|
|
broadcast_interval=config["broadcast_interval"],
|
|
num_sgd_iter=config["num_sgd_iter"],
|
|
minibatch_buffer_size=config["minibatch_buffer_size"],
|
|
num_aggregation_workers=config["num_aggregation_workers"],
|
|
learner_queue_size=config["learner_queue_size"],
|
|
learner_queue_timeout=config["learner_queue_timeout"],
|
|
**config["optimizer"])
|
|
|
|
if aggregators:
|
|
# Assign the pre-created aggregators to the optimizer
|
|
optimizer.aggregator.init(aggregators)
|
|
return optimizer
|
|
|
|
|
|
class OverrideDefaultResourceRequest:
|
|
@classmethod
|
|
@override(Trainable)
|
|
def default_resource_request(cls, config):
|
|
cf = dict(cls._default_config, **config)
|
|
Trainer._validate_config(cf)
|
|
return Resources(
|
|
cpu=cf["num_cpus_for_driver"],
|
|
gpu=cf["num_gpus"],
|
|
memory=cf["memory"],
|
|
object_store_memory=cf["object_store_memory"],
|
|
extra_cpu=cf["num_cpus_per_worker"] * cf["num_workers"] +
|
|
cf["num_aggregation_workers"],
|
|
extra_gpu=cf["num_gpus_per_worker"] * cf["num_workers"],
|
|
extra_memory=cf["memory_per_worker"] * cf["num_workers"],
|
|
extra_object_store_memory=cf["object_store_memory_per_worker"] *
|
|
cf["num_workers"])
|
|
|
|
|
|
ImpalaTrainer = build_trainer(
|
|
name="IMPALA",
|
|
default_config=DEFAULT_CONFIG,
|
|
default_policy=VTraceTFPolicy,
|
|
validate_config=validate_config,
|
|
get_policy_class=choose_policy,
|
|
make_workers=defer_make_workers,
|
|
make_policy_optimizer=make_aggregators_and_optimizer,
|
|
mixins=[OverrideDefaultResourceRequest])
|