mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
1010 lines
42 KiB
Python
1010 lines
42 KiB
Python
import errno
|
|
import gym
|
|
import logging
|
|
import numpy as np
|
|
import os
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
import ray
|
|
import ray.experimental.tf_utils
|
|
from ray.util.debug import log_once
|
|
from ray.rllib.policy.policy import Policy, LEARNER_STATS_KEY
|
|
from ray.rllib.policy.rnn_sequencing import pad_batch_to_sequences_of_same_size
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.utils.annotations import override, DeveloperAPI
|
|
from ray.rllib.utils.debug import summarize
|
|
from ray.rllib.utils.framework import try_import_tf, get_variable
|
|
from ray.rllib.utils.schedules import ConstantSchedule, PiecewiseSchedule
|
|
from ray.rllib.utils.tf_run_builder import TFRunBuilder
|
|
from ray.rllib.utils.typing import ModelGradients, TensorType, \
|
|
TrainerConfigDict
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@DeveloperAPI
|
|
class TFPolicy(Policy):
|
|
"""An agent policy and loss implemented in TensorFlow.
|
|
|
|
Do not sub-class this class directly (neither should you sub-class
|
|
DynamicTFPolicy), but rather use
|
|
rllib.policy.tf_policy_template.build_tf_policy
|
|
to generate your custom tf (graph-mode or eager) Policy classes.
|
|
|
|
Extending this class enables RLlib to perform TensorFlow specific
|
|
optimizations on the policy, e.g., parallelization across gpus or
|
|
fusing multiple graphs together in the multi-agent setting.
|
|
|
|
Input tensors are typically shaped like [BATCH_SIZE, ...].
|
|
|
|
Attributes:
|
|
observation_space (gym.Space): observation space of the policy.
|
|
action_space (gym.Space): action space of the policy.
|
|
model (rllib.models.Model): RLlib model used for the policy.
|
|
|
|
Examples:
|
|
>>> policy = TFPolicySubclass(
|
|
sess, obs_input, sampled_action, loss, loss_inputs)
|
|
|
|
>>> print(policy.compute_actions([1, 0, 2]))
|
|
(array([0, 1, 1]), [], {})
|
|
|
|
>>> print(policy.postprocess_trajectory(SampleBatch({...})))
|
|
SampleBatch({"action": ..., "advantages": ..., ...})
|
|
"""
|
|
|
|
@DeveloperAPI
|
|
def __init__(self,
|
|
observation_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
config: TrainerConfigDict,
|
|
sess: "tf1.Session",
|
|
obs_input: TensorType,
|
|
sampled_action: TensorType,
|
|
loss: TensorType,
|
|
loss_inputs: List[Tuple[str, TensorType]],
|
|
model: ModelV2 = None,
|
|
sampled_action_logp: Optional[TensorType] = None,
|
|
action_input: Optional[TensorType] = None,
|
|
log_likelihood: Optional[TensorType] = None,
|
|
dist_inputs: Optional[TensorType] = None,
|
|
dist_class: Optional[type] = None,
|
|
state_inputs: Optional[List[TensorType]] = None,
|
|
state_outputs: Optional[List[TensorType]] = None,
|
|
prev_action_input: Optional[TensorType] = None,
|
|
prev_reward_input: Optional[TensorType] = None,
|
|
seq_lens: Optional[TensorType] = None,
|
|
max_seq_len: int = 20,
|
|
batch_divisibility_req: int = 1,
|
|
update_ops: List[TensorType] = None,
|
|
explore: Optional[TensorType] = None,
|
|
timestep: Optional[TensorType] = None):
|
|
"""Initializes a Policy object.
|
|
|
|
Args:
|
|
observation_space (gym.spaces.Space): Observation space of the env.
|
|
action_space (gym.spaces.Space): Action space of the env.
|
|
config (TrainerConfigDict): The Policy config dict.
|
|
sess (tf1.Session): The TensorFlow session to use.
|
|
obs_input (TensorType): Input placeholder for observations, of
|
|
shape [BATCH_SIZE, obs...].
|
|
sampled_action (TensorType): Tensor for sampling an action, of
|
|
shape [BATCH_SIZE, action...]
|
|
loss (TensorType): Scalar policy loss output tensor.
|
|
loss_inputs (List[Tuple[str, TensorType]]): A (name, placeholder)
|
|
tuple for each loss input argument. Each placeholder name must
|
|
correspond to a SampleBatch column key returned by
|
|
postprocess_trajectory(), and has shape [BATCH_SIZE, data...].
|
|
These keys will be read from postprocessed sample batches and
|
|
fed into the specified placeholders during loss computation.
|
|
model (ModelV2): used to integrate custom losses and
|
|
stats from user-defined RLlib models.
|
|
sampled_action_logp (Optional[TensorType]): log probability of the
|
|
sampled action.
|
|
action_input (Optional[TensorType]): Input placeholder for actions
|
|
for logp/log-likelihood calculations.
|
|
log_likelihood (Optional[TensorType]): Tensor to calculate the
|
|
log_likelihood (given action_input and obs_input).
|
|
dist_class (Optional[type]): An optional ActionDistribution class
|
|
to use for generating a dist object from distribution inputs.
|
|
dist_inputs (Optional[TensorType]): Tensor to calculate the
|
|
distribution inputs/parameters.
|
|
state_inputs (Optional[List[TensorType]]): List of RNN state input
|
|
Tensors.
|
|
state_outputs (Optional[List[TensorType]]): List of RNN state
|
|
output Tensors.
|
|
prev_action_input (Optional[TensorType]): placeholder for previous
|
|
actions.
|
|
prev_reward_input (Optional[TensorType]): placeholder for previous
|
|
rewards.
|
|
seq_lens (Optional[TensorType]): Placeholder for RNN sequence
|
|
lengths, of shape [NUM_SEQUENCES].
|
|
Note that NUM_SEQUENCES << BATCH_SIZE. See
|
|
policy/rnn_sequencing.py for more information.
|
|
max_seq_len (int): Max sequence length for LSTM training.
|
|
batch_divisibility_req (int): pad all agent experiences batches to
|
|
multiples of this value. This only has an effect if not using
|
|
a LSTM model.
|
|
update_ops (List[TensorType]): override the batchnorm update ops to
|
|
run when applying gradients. Otherwise we run all update ops
|
|
found in the current variable scope.
|
|
explore (Optional[TensorType]): Placeholder for `explore` parameter
|
|
into call to Exploration.get_exploration_action.
|
|
timestep (Optional[TensorType]): Placeholder for the global
|
|
sampling timestep.
|
|
"""
|
|
self.framework = "tf"
|
|
super().__init__(observation_space, action_space, config)
|
|
|
|
# Log device and worker index.
|
|
if tfv == 2:
|
|
from ray.rllib.evaluation.rollout_worker import get_global_worker
|
|
worker = get_global_worker()
|
|
worker_idx = worker.worker_index if worker else 0
|
|
if tf.config.list_physical_devices("GPU"):
|
|
logger.info("TFPolicy (worker={}) running on GPU.".format(
|
|
worker_idx if worker_idx > 0 else "local"))
|
|
else:
|
|
logger.info("TFPolicy (worker={}) running on CPU.".format(
|
|
worker_idx if worker_idx > 0 else "local"))
|
|
|
|
# Disable env-info placeholder.
|
|
if SampleBatch.INFOS in self.view_requirements:
|
|
self.view_requirements[SampleBatch.INFOS].used_for_training = False
|
|
self.view_requirements[
|
|
SampleBatch.INFOS].used_for_compute_actions = False
|
|
|
|
assert model is None or isinstance(model, ModelV2), \
|
|
"Model classes for TFPolicy other than `ModelV2` not allowed! " \
|
|
"You passed in {}.".format(model)
|
|
self.model = model
|
|
# Auto-update model's inference view requirements, if recurrent.
|
|
if self.model is not None:
|
|
self._update_model_view_requirements_from_init_state()
|
|
|
|
self.exploration = self._create_exploration()
|
|
self._sess = sess
|
|
self._obs_input = obs_input
|
|
self._prev_action_input = prev_action_input
|
|
self._prev_reward_input = prev_reward_input
|
|
self._sampled_action = sampled_action
|
|
self._is_training = self._get_is_training_placeholder()
|
|
self._is_exploring = explore if explore is not None else \
|
|
tf1.placeholder_with_default(True, (), name="is_exploring")
|
|
self._sampled_action_logp = sampled_action_logp
|
|
self._sampled_action_prob = (tf.math.exp(self._sampled_action_logp)
|
|
if self._sampled_action_logp is not None
|
|
else None)
|
|
self._action_input = action_input # For logp calculations.
|
|
self._dist_inputs = dist_inputs
|
|
self.dist_class = dist_class
|
|
|
|
self._state_inputs = state_inputs or []
|
|
self._state_outputs = state_outputs or []
|
|
self._seq_lens = seq_lens
|
|
self._max_seq_len = max_seq_len
|
|
if len(self._state_inputs) != len(self._state_outputs):
|
|
raise ValueError(
|
|
"Number of state input and output tensors must match, got: "
|
|
"{} vs {}".format(self._state_inputs, self._state_outputs))
|
|
if self._state_inputs and self._seq_lens is None:
|
|
raise ValueError(
|
|
"seq_lens tensor must be given if state inputs are defined")
|
|
|
|
self._batch_divisibility_req = batch_divisibility_req
|
|
self._update_ops = update_ops
|
|
self._apply_op = None
|
|
self._stats_fetches = {}
|
|
self._timestep = timestep if timestep is not None else \
|
|
tf1.placeholder_with_default(
|
|
tf.zeros((), dtype=tf.int64), (), name="timestep")
|
|
|
|
self._optimizer = None
|
|
self._grads_and_vars = None
|
|
self._grads = None
|
|
# Policy tf-variables (weights), whose values to get/set via
|
|
# get_weights/set_weights.
|
|
self._variables = None
|
|
# Local optimizer's tf-variables (e.g. state vars for Adam).
|
|
# Will be stored alongside `self._variables` when checkpointing.
|
|
self._optimizer_variables = None
|
|
|
|
# The loss tf-op.
|
|
self._loss = None
|
|
# A batch dict passed into loss function as input.
|
|
self._loss_input_dict = {}
|
|
if loss is not None:
|
|
self._initialize_loss(loss, loss_inputs)
|
|
|
|
# The log-likelihood calculator op.
|
|
self._log_likelihood = log_likelihood
|
|
if self._log_likelihood is None and self._dist_inputs is not None and \
|
|
self.dist_class is not None:
|
|
self._log_likelihood = self.dist_class(
|
|
self._dist_inputs, self.model).logp(self._action_input)
|
|
|
|
def variables(self):
|
|
"""Return the list of all savable variables for this policy."""
|
|
return self.model.variables()
|
|
|
|
def get_placeholder(self, name) -> "tf1.placeholder":
|
|
"""Returns the given action or loss input placeholder by name.
|
|
|
|
If the loss has not been initialized and a loss input placeholder is
|
|
requested, an error is raised.
|
|
|
|
Args:
|
|
name (str): The name of the placeholder to return. One of
|
|
SampleBatch.CUR_OBS|PREV_ACTION/REWARD or a valid key from
|
|
`self._loss_input_dict`.
|
|
|
|
Returns:
|
|
tf1.placeholder: The placeholder under the given str key.
|
|
"""
|
|
if name == SampleBatch.CUR_OBS:
|
|
return self._obs_input
|
|
elif name == SampleBatch.PREV_ACTIONS:
|
|
return self._prev_action_input
|
|
elif name == SampleBatch.PREV_REWARDS:
|
|
return self._prev_reward_input
|
|
|
|
assert self._loss_input_dict, \
|
|
"You need to populate `self._loss_input_dict` before " \
|
|
"`get_placeholder()` can be called"
|
|
return self._loss_input_dict[name]
|
|
|
|
def get_session(self) -> "tf1.Session":
|
|
"""Returns a reference to the TF session for this policy."""
|
|
return self._sess
|
|
|
|
def loss_initialized(self) -> bool:
|
|
"""Returns whether the loss function has been initialized."""
|
|
return self._loss is not None
|
|
|
|
def _initialize_loss(self, loss: TensorType,
|
|
loss_inputs: List[Tuple[str, TensorType]]) -> None:
|
|
"""Initializes the loss op from given loss tensor and placeholders.
|
|
|
|
Args:
|
|
loss (TensorType): The loss op generated by some loss function.
|
|
loss_inputs (List[Tuple[str, TensorType]]): The list of Tuples:
|
|
(name, tf1.placeholders) needed for calculating the loss.
|
|
"""
|
|
self._loss_input_dict = dict(loss_inputs)
|
|
self._loss_input_dict_no_rnn = {
|
|
k: v
|
|
for k, v in self._loss_input_dict.items()
|
|
if (v not in self._state_inputs and v != self._seq_lens)
|
|
}
|
|
for i, ph in enumerate(self._state_inputs):
|
|
self._loss_input_dict["state_in_{}".format(i)] = ph
|
|
|
|
if self.model:
|
|
self._loss = self.model.custom_loss(loss, self._loss_input_dict)
|
|
self._stats_fetches.update({
|
|
"model": self.model.metrics() if isinstance(
|
|
self.model, ModelV2) else self.model.custom_stats()
|
|
})
|
|
else:
|
|
self._loss = loss
|
|
|
|
if self._optimizer is None:
|
|
self._optimizer = self.optimizer()
|
|
self._grads_and_vars = [
|
|
(g, v) for (g, v) in self.gradients(self._optimizer, self._loss)
|
|
if g is not None
|
|
]
|
|
self._grads = [g for (g, v) in self._grads_and_vars]
|
|
|
|
if self.model:
|
|
self._variables = ray.experimental.tf_utils.TensorFlowVariables(
|
|
[], self._sess, self.variables())
|
|
|
|
# gather update ops for any batch norm layers
|
|
if not self._update_ops:
|
|
self._update_ops = tf1.get_collection(
|
|
tf1.GraphKeys.UPDATE_OPS, scope=tf1.get_variable_scope().name)
|
|
if self._update_ops:
|
|
logger.info("Update ops to run on apply gradient: {}".format(
|
|
self._update_ops))
|
|
with tf1.control_dependencies(self._update_ops):
|
|
self._apply_op = self.build_apply_op(self._optimizer,
|
|
self._grads_and_vars)
|
|
|
|
if log_once("loss_used"):
|
|
logger.debug(
|
|
"These tensors were used in the loss_fn:\n\n{}\n".format(
|
|
summarize(self._loss_input_dict)))
|
|
|
|
self._sess.run(tf1.global_variables_initializer())
|
|
self._optimizer_variables = None
|
|
if self._optimizer:
|
|
self._optimizer_variables = \
|
|
ray.experimental.tf_utils.TensorFlowVariables(
|
|
self._optimizer.variables(), self._sess)
|
|
|
|
@override(Policy)
|
|
def compute_actions(
|
|
self,
|
|
obs_batch: Union[List[TensorType], TensorType],
|
|
state_batches: Optional[List[TensorType]] = None,
|
|
prev_action_batch: Union[List[TensorType], TensorType] = None,
|
|
prev_reward_batch: Union[List[TensorType], TensorType] = None,
|
|
info_batch: Optional[Dict[str, list]] = None,
|
|
episodes: Optional[List["MultiAgentEpisode"]] = None,
|
|
explore: Optional[bool] = None,
|
|
timestep: Optional[int] = None,
|
|
**kwargs):
|
|
|
|
explore = explore if explore is not None else self.config["explore"]
|
|
timestep = timestep if timestep is not None else self.global_timestep
|
|
|
|
builder = TFRunBuilder(self._sess, "compute_actions")
|
|
to_fetch = self._build_compute_actions(
|
|
builder,
|
|
obs_batch=obs_batch,
|
|
state_batches=state_batches,
|
|
prev_action_batch=prev_action_batch,
|
|
prev_reward_batch=prev_reward_batch,
|
|
explore=explore,
|
|
timestep=timestep)
|
|
|
|
# Execute session run to get action (and other fetches).
|
|
fetched = builder.get(to_fetch)
|
|
|
|
# Update our global timestep by the batch size.
|
|
self.global_timestep += len(obs_batch) if isinstance(obs_batch, list) \
|
|
else obs_batch.shape[0]
|
|
|
|
return fetched
|
|
|
|
@override(Policy)
|
|
def compute_actions_from_input_dict(
|
|
self,
|
|
input_dict: Dict[str, TensorType],
|
|
explore: bool = None,
|
|
timestep: Optional[int] = None,
|
|
episodes: Optional[List["MultiAgentEpisode"]] = None,
|
|
**kwargs) -> \
|
|
Tuple[TensorType, List[TensorType], Dict[str, TensorType]]:
|
|
|
|
explore = explore if explore is not None else self.config["explore"]
|
|
timestep = timestep if timestep is not None else self.global_timestep
|
|
|
|
builder = TFRunBuilder(self._sess, "compute_actions_from_input_dict")
|
|
obs_batch = input_dict[SampleBatch.OBS]
|
|
to_fetch = self._build_compute_actions(
|
|
builder, input_dict=input_dict, explore=explore, timestep=timestep)
|
|
|
|
# Execute session run to get action (and other fetches).
|
|
fetched = builder.get(to_fetch)
|
|
|
|
# Update our global timestep by the batch size.
|
|
self.global_timestep += len(obs_batch) if isinstance(obs_batch, list) \
|
|
else obs_batch.shape[0]
|
|
|
|
return fetched
|
|
|
|
@override(Policy)
|
|
def compute_log_likelihoods(
|
|
self,
|
|
actions: Union[List[TensorType], TensorType],
|
|
obs_batch: Union[List[TensorType], TensorType],
|
|
state_batches: Optional[List[TensorType]] = None,
|
|
prev_action_batch: Optional[Union[List[TensorType],
|
|
TensorType]] = None,
|
|
prev_reward_batch: Optional[Union[List[
|
|
TensorType], TensorType]] = None) -> TensorType:
|
|
|
|
if self._log_likelihood is None:
|
|
raise ValueError("Cannot compute log-prob/likelihood w/o a "
|
|
"self._log_likelihood op!")
|
|
|
|
# Exploration hook before each forward pass.
|
|
self.exploration.before_compute_actions(
|
|
explore=False, tf_sess=self.get_session())
|
|
|
|
builder = TFRunBuilder(self._sess, "compute_log_likelihoods")
|
|
# Feed actions (for which we want logp values) into graph.
|
|
builder.add_feed_dict({self._action_input: actions})
|
|
# Feed observations.
|
|
builder.add_feed_dict({self._obs_input: obs_batch})
|
|
# Internal states.
|
|
state_batches = state_batches or []
|
|
if len(self._state_inputs) != len(state_batches):
|
|
raise ValueError(
|
|
"Must pass in RNN state batches for placeholders {}, got {}".
|
|
format(self._state_inputs, state_batches))
|
|
builder.add_feed_dict(
|
|
{k: v
|
|
for k, v in zip(self._state_inputs, state_batches)})
|
|
if state_batches:
|
|
builder.add_feed_dict({self._seq_lens: np.ones(len(obs_batch))})
|
|
# Prev-a and r.
|
|
if self._prev_action_input is not None and \
|
|
prev_action_batch is not None:
|
|
builder.add_feed_dict({self._prev_action_input: prev_action_batch})
|
|
if self._prev_reward_input is not None and \
|
|
prev_reward_batch is not None:
|
|
builder.add_feed_dict({self._prev_reward_input: prev_reward_batch})
|
|
# Fetch the log_likelihoods output and return.
|
|
fetches = builder.add_fetches([self._log_likelihood])
|
|
return builder.get(fetches)[0]
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def learn_on_batch(
|
|
self, postprocessed_batch: SampleBatch) -> Dict[str, TensorType]:
|
|
assert self.loss_initialized()
|
|
|
|
builder = TFRunBuilder(self._sess, "learn_on_batch")
|
|
|
|
# Callback handling.
|
|
learn_stats = {}
|
|
self.callbacks.on_learn_on_batch(
|
|
policy=self, train_batch=postprocessed_batch, result=learn_stats)
|
|
|
|
fetches = self._build_learn_on_batch(builder, postprocessed_batch)
|
|
stats = builder.get(fetches)
|
|
stats.update({"custom_metrics": learn_stats})
|
|
return stats
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def compute_gradients(
|
|
self,
|
|
postprocessed_batch: SampleBatch) -> \
|
|
Tuple[ModelGradients, Dict[str, TensorType]]:
|
|
assert self.loss_initialized()
|
|
builder = TFRunBuilder(self._sess, "compute_gradients")
|
|
fetches = self._build_compute_gradients(builder, postprocessed_batch)
|
|
return builder.get(fetches)
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def apply_gradients(self, gradients: ModelGradients) -> None:
|
|
assert self.loss_initialized()
|
|
builder = TFRunBuilder(self._sess, "apply_gradients")
|
|
fetches = self._build_apply_gradients(builder, gradients)
|
|
builder.get(fetches)
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def get_exploration_info(self) -> Dict[str, TensorType]:
|
|
return self.exploration.get_info(sess=self.get_session())
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def get_weights(self) -> Union[Dict[str, TensorType], List[TensorType]]:
|
|
return self._variables.get_weights()
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def set_weights(self, weights) -> None:
|
|
return self._variables.set_weights(weights)
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def get_state(self) -> Union[Dict[str, TensorType], List[TensorType]]:
|
|
# For tf Policies, return Policy weights and optimizer var values.
|
|
state = super().get_state()
|
|
if self._optimizer_variables and \
|
|
len(self._optimizer_variables.variables) > 0:
|
|
state["_optimizer_variables"] = \
|
|
self._sess.run(self._optimizer_variables.variables)
|
|
return state
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def set_state(self, state) -> None:
|
|
state = state.copy() # shallow copy
|
|
# Set optimizer vars first.
|
|
optimizer_vars = state.pop("_optimizer_variables", None)
|
|
if optimizer_vars:
|
|
self._optimizer_variables.set_weights(optimizer_vars)
|
|
# Then the Policy's (NN) weights.
|
|
super().set_state(state)
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def export_model(self, export_dir: str) -> None:
|
|
"""Export tensorflow graph to export_dir for serving."""
|
|
with self._sess.graph.as_default():
|
|
builder = tf1.saved_model.builder.SavedModelBuilder(export_dir)
|
|
signature_def_map = self._build_signature_def()
|
|
builder.add_meta_graph_and_variables(
|
|
self._sess, [tf1.saved_model.tag_constants.SERVING],
|
|
signature_def_map=signature_def_map,
|
|
saver=tf1.summary.FileWriter(export_dir).add_graph(
|
|
graph=self._sess.graph))
|
|
builder.save()
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def export_checkpoint(self,
|
|
export_dir: str,
|
|
filename_prefix: str = "model") -> None:
|
|
"""Export tensorflow checkpoint to export_dir."""
|
|
try:
|
|
os.makedirs(export_dir)
|
|
except OSError as e:
|
|
# ignore error if export dir already exists
|
|
if e.errno != errno.EEXIST:
|
|
raise
|
|
save_path = os.path.join(export_dir, filename_prefix)
|
|
with self._sess.graph.as_default():
|
|
saver = tf1.train.Saver()
|
|
saver.save(self._sess, save_path)
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def import_model_from_h5(self, import_file: str) -> None:
|
|
"""Imports weights into tf model."""
|
|
# Make sure the session is the right one (see issue #7046).
|
|
with self._sess.graph.as_default():
|
|
with self._sess.as_default():
|
|
return self.model.import_from_h5(import_file)
|
|
|
|
@DeveloperAPI
|
|
def copy(self,
|
|
existing_inputs: List[Tuple[str, "tf1.placeholder"]]) -> \
|
|
"TFPolicy":
|
|
"""Creates a copy of self using existing input placeholders.
|
|
|
|
Optional: Only required to work with the multi-GPU optimizer.
|
|
|
|
Args:
|
|
existing_inputs (List[Tuple[str, tf1.placeholder]]): Dict mapping
|
|
names (str) to tf1.placeholders to re-use (share) with the
|
|
returned copy of self.
|
|
|
|
Returns:
|
|
TFPolicy: A copy of self.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def is_recurrent(self) -> bool:
|
|
return len(self._state_inputs) > 0
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def num_state_tensors(self) -> int:
|
|
return len(self._state_inputs)
|
|
|
|
@DeveloperAPI
|
|
def extra_compute_action_feed_dict(self) -> Dict[TensorType, TensorType]:
|
|
"""Extra dict to pass to the compute actions session run.
|
|
|
|
Returns:
|
|
Dict[TensorType, TensorType]: A feed dict to be added to the
|
|
feed_dict passed to the compute_actions session.run() call.
|
|
"""
|
|
return {}
|
|
|
|
@DeveloperAPI
|
|
def extra_compute_action_fetches(self) -> Dict[str, TensorType]:
|
|
"""Extra values to fetch and return from compute_actions().
|
|
|
|
By default we return action probability/log-likelihood info
|
|
and action distribution inputs (if present).
|
|
|
|
Returns:
|
|
Dict[str, TensorType]: An extra fetch-dict to be passed to and
|
|
returned from the compute_actions() call.
|
|
"""
|
|
extra_fetches = {}
|
|
# Action-logp and action-prob.
|
|
if self._sampled_action_logp is not None:
|
|
extra_fetches[SampleBatch.ACTION_PROB] = self._sampled_action_prob
|
|
extra_fetches[SampleBatch.ACTION_LOGP] = self._sampled_action_logp
|
|
# Action-dist inputs.
|
|
if self._dist_inputs is not None:
|
|
extra_fetches[SampleBatch.ACTION_DIST_INPUTS] = self._dist_inputs
|
|
return extra_fetches
|
|
|
|
@DeveloperAPI
|
|
def extra_compute_grad_feed_dict(self) -> Dict[TensorType, TensorType]:
|
|
"""Extra dict to pass to the compute gradients session run.
|
|
|
|
Returns:
|
|
Dict[TensorType, TensorType]: Extra feed_dict to be passed to the
|
|
compute_gradients Session.run() call.
|
|
"""
|
|
return {} # e.g, kl_coeff
|
|
|
|
@DeveloperAPI
|
|
def extra_compute_grad_fetches(self) -> Dict[str, any]:
|
|
"""Extra values to fetch and return from compute_gradients().
|
|
|
|
Returns:
|
|
Dict[str, any]: Extra fetch dict to be added to the fetch dict
|
|
of the compute_gradients Session.run() call.
|
|
"""
|
|
return {LEARNER_STATS_KEY: {}} # e.g, stats, td error, etc.
|
|
|
|
@DeveloperAPI
|
|
def optimizer(self) -> "tf.keras.optimizers.Optimizer":
|
|
"""TF optimizer to use for policy optimization.
|
|
|
|
Returns:
|
|
tf.keras.optimizers.Optimizer: The local optimizer to use for this
|
|
Policy's Model.
|
|
"""
|
|
if hasattr(self, "config"):
|
|
return tf1.train.AdamOptimizer(learning_rate=self.config["lr"])
|
|
else:
|
|
return tf1.train.AdamOptimizer()
|
|
|
|
@DeveloperAPI
|
|
def gradients(self, optimizer: "tf.keras.optimizers.Optimizer",
|
|
loss: TensorType) -> List[Tuple[TensorType, TensorType]]:
|
|
"""Override this for a custom gradient computation behavior.
|
|
|
|
Returns:
|
|
List[Tuple[TensorType, TensorType]]: List of tuples with grad
|
|
values and the grad-value's corresponding tf.variable in it.
|
|
"""
|
|
return optimizer.compute_gradients(loss)
|
|
|
|
@DeveloperAPI
|
|
def build_apply_op(
|
|
self,
|
|
optimizer: "tf.keras.optimizers.Optimizer",
|
|
grads_and_vars: List[Tuple[TensorType, TensorType]]) -> \
|
|
"tf.Operation":
|
|
"""Override this for a custom gradient apply computation behavior.
|
|
|
|
Args:
|
|
optimizer (tf.keras.optimizers.Optimizer): The local tf optimizer
|
|
to use for applying the grads and vars.
|
|
grads_and_vars (List[Tuple[TensorType, TensorType]]): List of
|
|
tuples with grad values and the grad-value's corresponding
|
|
tf.variable in it.
|
|
"""
|
|
# Specify global_step for TD3 which needs to count the num updates.
|
|
return optimizer.apply_gradients(
|
|
self._grads_and_vars,
|
|
global_step=tf1.train.get_or_create_global_step())
|
|
|
|
def _get_is_training_placeholder(self):
|
|
"""Get the placeholder for _is_training, i.e., for batch norm layers.
|
|
|
|
This can be called safely before __init__ has run.
|
|
"""
|
|
if not hasattr(self, "_is_training"):
|
|
self._is_training = tf1.placeholder_with_default(
|
|
False, (), name="is_training")
|
|
return self._is_training
|
|
|
|
def _debug_vars(self):
|
|
if log_once("grad_vars"):
|
|
for _, v in self._grads_and_vars:
|
|
logger.info("Optimizing variable {}".format(v))
|
|
|
|
def _extra_input_signature_def(self):
|
|
"""Extra input signatures to add when exporting tf model.
|
|
Inferred from extra_compute_action_feed_dict()
|
|
"""
|
|
feed_dict = self.extra_compute_action_feed_dict()
|
|
return {
|
|
k.name: tf1.saved_model.utils.build_tensor_info(k)
|
|
for k in feed_dict.keys()
|
|
}
|
|
|
|
def _extra_output_signature_def(self):
|
|
"""Extra output signatures to add when exporting tf model.
|
|
Inferred from extra_compute_action_fetches()
|
|
"""
|
|
fetches = self.extra_compute_action_fetches()
|
|
return {
|
|
k: tf1.saved_model.utils.build_tensor_info(fetches[k])
|
|
for k in fetches.keys()
|
|
}
|
|
|
|
def _build_signature_def(self):
|
|
"""Build signature def map for tensorflow SavedModelBuilder.
|
|
"""
|
|
# build input signatures
|
|
input_signature = self._extra_input_signature_def()
|
|
input_signature["observations"] = \
|
|
tf1.saved_model.utils.build_tensor_info(self._obs_input)
|
|
|
|
if self._seq_lens is not None:
|
|
input_signature["seq_lens"] = \
|
|
tf1.saved_model.utils.build_tensor_info(self._seq_lens)
|
|
if self._prev_action_input is not None:
|
|
input_signature["prev_action"] = \
|
|
tf1.saved_model.utils.build_tensor_info(
|
|
self._prev_action_input)
|
|
if self._prev_reward_input is not None:
|
|
input_signature["prev_reward"] = \
|
|
tf1.saved_model.utils.build_tensor_info(
|
|
self._prev_reward_input)
|
|
|
|
input_signature["is_training"] = \
|
|
tf1.saved_model.utils.build_tensor_info(self._is_training)
|
|
|
|
if self._timestep is not None:
|
|
input_signature["timestep"] = \
|
|
tf1.saved_model.utils.build_tensor_info(self._timestep)
|
|
|
|
for state_input in self._state_inputs:
|
|
input_signature[state_input.name] = \
|
|
tf1.saved_model.utils.build_tensor_info(state_input)
|
|
|
|
# build output signatures
|
|
output_signature = self._extra_output_signature_def()
|
|
for i, a in enumerate(tf.nest.flatten(self._sampled_action)):
|
|
output_signature["actions_{}".format(i)] = \
|
|
tf1.saved_model.utils.build_tensor_info(a)
|
|
|
|
for state_output in self._state_outputs:
|
|
output_signature[state_output.name] = \
|
|
tf1.saved_model.utils.build_tensor_info(state_output)
|
|
signature_def = (
|
|
tf1.saved_model.signature_def_utils.build_signature_def(
|
|
input_signature, output_signature,
|
|
tf1.saved_model.signature_constants.PREDICT_METHOD_NAME))
|
|
signature_def_key = (tf1.saved_model.signature_constants.
|
|
DEFAULT_SERVING_SIGNATURE_DEF_KEY)
|
|
signature_def_map = {signature_def_key: signature_def}
|
|
return signature_def_map
|
|
|
|
def _build_compute_actions(self,
|
|
builder,
|
|
*,
|
|
input_dict=None,
|
|
obs_batch=None,
|
|
state_batches=None,
|
|
prev_action_batch=None,
|
|
prev_reward_batch=None,
|
|
episodes=None,
|
|
explore=None,
|
|
timestep=None):
|
|
explore = explore if explore is not None else self.config["explore"]
|
|
timestep = timestep if timestep is not None else self.global_timestep
|
|
|
|
# Call the exploration before_compute_actions hook.
|
|
self.exploration.before_compute_actions(
|
|
timestep=timestep, explore=explore, tf_sess=self.get_session())
|
|
|
|
builder.add_feed_dict(self.extra_compute_action_feed_dict())
|
|
|
|
# `input_dict` given: Simply build what's in that dict.
|
|
if input_dict is not None:
|
|
if hasattr(self, "_input_dict"):
|
|
for key, value in input_dict.items():
|
|
if key in self._input_dict:
|
|
builder.add_feed_dict({self._input_dict[key]: value})
|
|
# For policies that inherit directly from TFPolicy.
|
|
else:
|
|
builder.add_feed_dict({
|
|
self._obs_input: input_dict[SampleBatch.OBS]
|
|
})
|
|
if SampleBatch.PREV_ACTIONS in input_dict:
|
|
builder.add_feed_dict({
|
|
self._prev_action_input: input_dict[
|
|
SampleBatch.PREV_ACTIONS]
|
|
})
|
|
if SampleBatch.PREV_REWARDS in input_dict:
|
|
builder.add_feed_dict({
|
|
self._prev_reward_input: input_dict[
|
|
SampleBatch.PREV_REWARDS]
|
|
})
|
|
state_batches = []
|
|
i = 0
|
|
while "state_in_{}".format(i) in input_dict:
|
|
state_batches.append(input_dict["state_in_{}".format(i)])
|
|
i += 1
|
|
builder.add_feed_dict(
|
|
dict(zip(self._state_inputs, state_batches)))
|
|
|
|
if "state_in_0" in input_dict:
|
|
builder.add_feed_dict({
|
|
self._seq_lens: np.ones(len(input_dict["state_in_0"]))
|
|
})
|
|
|
|
# Hardcoded old way: Build fixed fields, if provided.
|
|
# TODO: (sven) This can be deprecated after trajectory view API flag is
|
|
# removed and always True.
|
|
else:
|
|
state_batches = state_batches or []
|
|
if len(self._state_inputs) != len(state_batches):
|
|
raise ValueError(
|
|
"Must pass in RNN state batches for placeholders {}, "
|
|
"got {}".format(self._state_inputs, state_batches))
|
|
|
|
builder.add_feed_dict({self._obs_input: obs_batch})
|
|
if state_batches:
|
|
builder.add_feed_dict({
|
|
self._seq_lens: np.ones(len(obs_batch))
|
|
})
|
|
if self._prev_action_input is not None and \
|
|
prev_action_batch is not None:
|
|
builder.add_feed_dict({
|
|
self._prev_action_input: prev_action_batch
|
|
})
|
|
if self._prev_reward_input is not None and \
|
|
prev_reward_batch is not None:
|
|
builder.add_feed_dict({
|
|
self._prev_reward_input: prev_reward_batch
|
|
})
|
|
builder.add_feed_dict(dict(zip(self._state_inputs, state_batches)))
|
|
|
|
builder.add_feed_dict({self._is_training: False})
|
|
builder.add_feed_dict({self._is_exploring: explore})
|
|
if timestep is not None:
|
|
builder.add_feed_dict({self._timestep: timestep})
|
|
|
|
# Determine, what exactly to fetch from the graph.
|
|
to_fetch = [self._sampled_action] + self._state_outputs + \
|
|
[self.extra_compute_action_fetches()]
|
|
|
|
# Perform the session call.
|
|
fetches = builder.add_fetches(to_fetch)
|
|
return fetches[0], fetches[1:-1], fetches[-1]
|
|
|
|
def _build_compute_gradients(self, builder, postprocessed_batch):
|
|
self._debug_vars()
|
|
builder.add_feed_dict(self.extra_compute_grad_feed_dict())
|
|
builder.add_feed_dict(
|
|
self._get_loss_inputs_dict(postprocessed_batch, shuffle=False))
|
|
fetches = builder.add_fetches(
|
|
[self._grads, self._get_grad_and_stats_fetches()])
|
|
return fetches[0], fetches[1]
|
|
|
|
def _build_apply_gradients(self, builder, gradients):
|
|
if len(gradients) != len(self._grads):
|
|
raise ValueError(
|
|
"Unexpected number of gradients to apply, got {} for {}".
|
|
format(gradients, self._grads))
|
|
builder.add_feed_dict({self._is_training: True})
|
|
builder.add_feed_dict(dict(zip(self._grads, gradients)))
|
|
fetches = builder.add_fetches([self._apply_op])
|
|
return fetches[0]
|
|
|
|
def _build_learn_on_batch(self, builder, postprocessed_batch):
|
|
self._debug_vars()
|
|
|
|
builder.add_feed_dict(self.extra_compute_grad_feed_dict())
|
|
builder.add_feed_dict(
|
|
self._get_loss_inputs_dict(postprocessed_batch, shuffle=False))
|
|
fetches = builder.add_fetches([
|
|
self._apply_op,
|
|
self._get_grad_and_stats_fetches(),
|
|
])
|
|
return fetches[1]
|
|
|
|
def _get_grad_and_stats_fetches(self):
|
|
fetches = self.extra_compute_grad_fetches()
|
|
if LEARNER_STATS_KEY not in fetches:
|
|
raise ValueError(
|
|
"Grad fetches should contain 'stats': {...} entry")
|
|
if self._stats_fetches:
|
|
fetches[LEARNER_STATS_KEY] = dict(self._stats_fetches,
|
|
**fetches[LEARNER_STATS_KEY])
|
|
return fetches
|
|
|
|
def _get_loss_inputs_dict(self, train_batch: SampleBatch, shuffle: bool):
|
|
"""Return a feed dict from a batch.
|
|
|
|
Args:
|
|
train_batch (SampleBatch): batch of data to derive inputs from.
|
|
shuffle (bool): whether to shuffle batch sequences. Shuffle may
|
|
be done in-place. This only makes sense if you're further
|
|
applying minibatch SGD after getting the outputs.
|
|
|
|
Returns:
|
|
Feed dict of data.
|
|
"""
|
|
|
|
if not isinstance(train_batch,
|
|
SampleBatch) or not train_batch.zero_padded:
|
|
pad_batch_to_sequences_of_same_size(
|
|
train_batch,
|
|
max_seq_len=self._max_seq_len,
|
|
shuffle=shuffle,
|
|
batch_divisibility_req=self._batch_divisibility_req,
|
|
feature_keys=list(self._loss_input_dict_no_rnn.keys()),
|
|
view_requirements=self.view_requirements,
|
|
)
|
|
else:
|
|
train_batch["seq_lens"] = train_batch.seq_lens
|
|
|
|
# Get batch ready for RNNs, if applicable.
|
|
|
|
# Mark the batch as "is_training" so the Model can use this
|
|
# information.
|
|
train_batch["is_training"] = True
|
|
|
|
# Build the feed dict from the batch.
|
|
feed_dict = {}
|
|
for key, placeholder in self._loss_input_dict.items():
|
|
feed_dict[placeholder] = train_batch[key]
|
|
|
|
state_keys = [
|
|
"state_in_{}".format(i) for i in range(len(self._state_inputs))
|
|
]
|
|
for key in state_keys:
|
|
feed_dict[self._loss_input_dict[key]] = train_batch[key]
|
|
if state_keys:
|
|
feed_dict[self._seq_lens] = train_batch["seq_lens"]
|
|
|
|
return feed_dict
|
|
|
|
|
|
@DeveloperAPI
|
|
class LearningRateSchedule:
|
|
"""Mixin for TFPolicy that adds a learning rate schedule."""
|
|
|
|
@DeveloperAPI
|
|
def __init__(self, lr, lr_schedule):
|
|
self.cur_lr = tf1.get_variable("lr", initializer=lr, trainable=False)
|
|
self._lr_schedule = lr_schedule
|
|
if self._lr_schedule is not None:
|
|
self._lr_schedule = PiecewiseSchedule(
|
|
lr_schedule, outside_value=lr_schedule[-1][-1], framework=None)
|
|
if self.framework == "tf":
|
|
self._lr_placeholder = tf1.placeholder(
|
|
dtype=tf.float32, name="lr")
|
|
self._lr_update = self.cur_lr.assign(
|
|
self._lr_placeholder, read_value=False)
|
|
|
|
@override(Policy)
|
|
def on_global_var_update(self, global_vars):
|
|
super(LearningRateSchedule, self).on_global_var_update(global_vars)
|
|
if self._lr_schedule is not None:
|
|
new_val = self._lr_schedule.value(global_vars["timestep"])
|
|
if self.framework == "tf":
|
|
self._sess.run(
|
|
self._lr_update, feed_dict={self._lr_placeholder: new_val})
|
|
else:
|
|
self.cur_lr.assign(new_val, read_value=False)
|
|
|
|
@override(TFPolicy)
|
|
def optimizer(self):
|
|
return tf1.train.AdamOptimizer(learning_rate=self.cur_lr)
|
|
|
|
|
|
@DeveloperAPI
|
|
class EntropyCoeffSchedule:
|
|
"""Mixin for TFPolicy that adds entropy coeff decay."""
|
|
|
|
@DeveloperAPI
|
|
def __init__(self, entropy_coeff, entropy_coeff_schedule):
|
|
self.entropy_coeff = get_variable(
|
|
entropy_coeff,
|
|
framework="tf",
|
|
tf_name="entropy_coeff",
|
|
trainable=False)
|
|
|
|
if entropy_coeff_schedule is None:
|
|
self.entropy_coeff_schedule = ConstantSchedule(
|
|
entropy_coeff, framework=None)
|
|
else:
|
|
# Allows for custom schedule similar to lr_schedule format
|
|
if isinstance(entropy_coeff_schedule, list):
|
|
self.entropy_coeff_schedule = PiecewiseSchedule(
|
|
entropy_coeff_schedule,
|
|
outside_value=entropy_coeff_schedule[-1][-1],
|
|
framework=None)
|
|
else:
|
|
# Implements previous version but enforces outside_value
|
|
self.entropy_coeff_schedule = PiecewiseSchedule(
|
|
[[0, entropy_coeff], [entropy_coeff_schedule, 0.0]],
|
|
outside_value=0.0,
|
|
framework=None)
|
|
|
|
@override(Policy)
|
|
def on_global_var_update(self, global_vars):
|
|
super(EntropyCoeffSchedule, self).on_global_var_update(global_vars)
|
|
op_or_none = self.entropy_coeff.assign(
|
|
self.entropy_coeff_schedule.value(global_vars["timestep"]),
|
|
read_value=False, # return tf op (None in eager mode).
|
|
)
|
|
if self._sess is not None:
|
|
self._sess.run(op_or_none)
|