ray/rllib/examples/two_step_game.py

128 lines
4 KiB
Python

"""The two-step game from QMIX: https://arxiv.org/pdf/1803.11485.pdf
Configurations you can try:
- normal policy gradients (PG)
- contrib/MADDPG
- QMIX
See also: centralized_critic.py for centralized critic PPO on this game.
"""
import argparse
from gym.spaces import Tuple, MultiDiscrete, Dict, Discrete
import os
import ray
from ray import tune
from ray.tune import register_env, grid_search
from ray.rllib.env.multi_agent_env import ENV_STATE
from ray.rllib.examples.env.two_step_game import TwoStepGame
from ray.rllib.utils.test_utils import check_learning_achieved
parser = argparse.ArgumentParser()
parser.add_argument("--run", type=str, default="PG")
parser.add_argument("--num-cpus", type=int, default=0)
parser.add_argument("--as-test", action="store_true")
parser.add_argument("--torch", action="store_true")
parser.add_argument("--stop-reward", type=float, default=7.0)
parser.add_argument("--stop-timesteps", type=int, default=50000)
if __name__ == "__main__":
args = parser.parse_args()
grouping = {
"group_1": [0, 1],
}
obs_space = Tuple([
Dict({
"obs": MultiDiscrete([2, 2, 2, 3]),
ENV_STATE: MultiDiscrete([2, 2, 2])
}),
Dict({
"obs": MultiDiscrete([2, 2, 2, 3]),
ENV_STATE: MultiDiscrete([2, 2, 2])
}),
])
act_space = Tuple([
TwoStepGame.action_space,
TwoStepGame.action_space,
])
register_env(
"grouped_twostep",
lambda config: TwoStepGame(config).with_agent_groups(
grouping, obs_space=obs_space, act_space=act_space))
if args.run == "contrib/MADDPG":
obs_space_dict = {
"agent_1": Discrete(6),
"agent_2": Discrete(6),
}
act_space_dict = {
"agent_1": TwoStepGame.action_space,
"agent_2": TwoStepGame.action_space,
}
config = {
"learning_starts": 100,
"env_config": {
"actions_are_logits": True,
},
"multiagent": {
"policies": {
"pol1": (None, Discrete(6), TwoStepGame.action_space, {
"agent_id": 0,
}),
"pol2": (None, Discrete(6), TwoStepGame.action_space, {
"agent_id": 1,
}),
},
"policy_mapping_fn": lambda x: "pol1" if x == 0 else "pol2",
},
"framework": "torch" if args.torch else "tf",
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
}
group = False
elif args.run == "QMIX":
config = {
"rollout_fragment_length": 4,
"train_batch_size": 32,
"exploration_config": {
"epsilon_timesteps": 5000,
"final_epsilon": 0.05,
},
"num_workers": 0,
"mixer": grid_search([None, "qmix", "vdn"]),
"env_config": {
"separate_state_space": True,
"one_hot_state_encoding": True
},
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"framework": "torch" if args.torch else "tf",
}
group = True
else:
config = {
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"framework": "torch" if args.torch else "tf",
}
group = False
ray.init(num_cpus=args.num_cpus or None)
stop = {
"episode_reward_mean": args.stop_reward,
"timesteps_total": args.stop_timesteps,
}
config = dict(config, **{
"env": "grouped_twostep" if group else TwoStepGame,
})
results = tune.run(args.run, stop=stop, config=config, verbose=1)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()