ray/rllib/examples/batch_norm_model.py

55 lines
1.7 KiB
Python

"""Example of using a custom model with batch norm."""
import argparse
import os
import ray
from ray import tune
from ray.rllib.examples.models.batch_norm_model import BatchNormModel, \
KerasBatchNormModel, TorchBatchNormModel
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check_learning_achieved
tf1, tf, tfv = try_import_tf()
parser = argparse.ArgumentParser()
parser.add_argument("--run", type=str, default="PPO")
parser.add_argument("--as-test", action="store_true")
parser.add_argument("--torch", action="store_true")
parser.add_argument("--stop-iters", type=int, default=200)
parser.add_argument("--stop-timesteps", type=int, default=100000)
parser.add_argument("--stop-reward", type=float, default=150)
if __name__ == "__main__":
args = parser.parse_args()
ray.init()
ModelCatalog.register_custom_model(
"bn_model", TorchBatchNormModel if args.torch else KerasBatchNormModel
if args.run != "PPO" else BatchNormModel)
config = {
"env": "Pendulum-v0" if args.run in ["DDPG", "SAC"] else "CartPole-v0",
"model": {
"custom_model": "bn_model",
},
"lr": 0.0003,
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"num_workers": 0,
"framework": "torch" if args.torch else "tf",
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
results = tune.run(args.run, stop=stop, config=config, verbose=2)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()