mirror of
https://github.com/vale981/ray
synced 2025-03-09 12:56:46 -04:00

* Add integer quantization and loguniform support * Fix hyperopt qloguniform not being np.log'd first * Add tests, __init__ * Try to fix tests, better exceptions * Tweak docstrings * Type checks in SearchSpaceTest * Update docs * Lint, tests * Update doc/source/tune/api_docs/search_space.rst Co-authored-by: Kai Fricke <krfricke@users.noreply.github.com> Co-authored-by: Kai Fricke <krfricke@users.noreply.github.com>
277 lines
8.2 KiB
ReStructuredText
277 lines
8.2 KiB
ReStructuredText
.. _tune-search-space:
|
|
|
|
Search Space API
|
|
================
|
|
Overview
|
|
--------
|
|
|
|
Tune has a native interface for specifying search spaces. You can specify the search space via ``tune.run(config=...)``.
|
|
|
|
Thereby, you can either use the ``tune.grid_search`` primitive to specify an axis of a grid search...
|
|
|
|
.. code-block:: python
|
|
|
|
tune.run(
|
|
trainable,
|
|
config={"bar": tune.grid_search([True, False])})
|
|
|
|
|
|
... or one of the random sampling primitives to specify distributions (:ref:`tune-sample-docs`):
|
|
|
|
.. code-block:: python
|
|
|
|
tune.run(
|
|
trainable,
|
|
config={
|
|
"param1": tune.choice([True, False]),
|
|
"bar": tune.uniform(0, 10),
|
|
"alpha": tune.sample_from(lambda _: np.random.uniform(100) ** 2),
|
|
"const": "hello" # It is also ok to specify constant values.
|
|
})
|
|
|
|
|
|
|
|
.. caution:: If you use a Search Algorithm, you may not be able to specify lambdas or grid search with this
|
|
interface, as some search algorithms may not be compatible.
|
|
|
|
|
|
To sample multiple times/run multiple trials, specify ``tune.run(num_samples=N``. If ``grid_search`` is provided as an argument, the *same* grid will be repeated ``N`` times.
|
|
|
|
.. code-block:: python
|
|
|
|
# 13 different configs.
|
|
tune.run(trainable, num_samples=13, config={
|
|
"x": tune.choice([0, 1, 2]),
|
|
}
|
|
)
|
|
|
|
# 13 different configs.
|
|
tune.run(trainable, num_samples=13, config={
|
|
"x": tune.choice([0, 1, 2]),
|
|
"y": tune.randn([0, 1, 2]),
|
|
}
|
|
)
|
|
|
|
# 4 different configs.
|
|
tune.run(trainable, config={"x": tune.grid_search([1, 2, 3, 4])}, num_samples=1)
|
|
|
|
# 3 different configs.
|
|
tune.run(trainable, config={"x": grid_search([1, 2, 3])}, num_samples=1)
|
|
|
|
# 6 different configs.
|
|
tune.run(trainable, config={"x": tune.grid_search([1, 2, 3])}, num_samples=2)
|
|
|
|
# 9 different configs.
|
|
tune.run(trainable, num_samples=1, config={
|
|
"x": tune.grid_search([1, 2, 3]),
|
|
"y": tune.grid_search([a, b, c])}
|
|
)
|
|
|
|
# 18 different configs.
|
|
tune.run(trainable, num_samples=2, config={
|
|
"x": tune.grid_search([1, 2, 3]),
|
|
"y": tune.grid_search([a, b, c])}
|
|
)
|
|
|
|
# 45 different configs.
|
|
tune.run(trainable, num_samples=5, config={
|
|
"x": tune.grid_search([1, 2, 3]),
|
|
"y": tune.grid_search([a, b, c])}
|
|
)
|
|
|
|
|
|
|
|
Note that grid search and random search primitives are inter-operable. Each can be used independently or in combination with each other.
|
|
|
|
.. code-block:: python
|
|
|
|
# 6 different configs.
|
|
tune.run(trainable, num_samples=2, config={
|
|
"x": tune.sample_from(...),
|
|
"y": tune.grid_search([a, b, c])
|
|
}
|
|
)
|
|
|
|
In the below example, ``num_samples=10`` repeats the 3x3 grid search 10 times, for a total of 90 trials, each with randomly sampled values of ``alpha`` and ``beta``.
|
|
|
|
.. code-block:: python
|
|
:emphasize-lines: 12
|
|
|
|
tune.run(
|
|
my_trainable,
|
|
name="my_trainable",
|
|
# num_samples will repeat the entire config 10 times.
|
|
num_samples=10
|
|
config={
|
|
# ``sample_from`` creates a generator to call the lambda once per trial.
|
|
"alpha": tune.sample_from(lambda spec: np.random.uniform(100)),
|
|
# ``sample_from`` also supports "conditional search spaces"
|
|
"beta": tune.sample_from(lambda spec: spec.config.alpha * np.random.normal()),
|
|
"nn_layers": [
|
|
# tune.grid_search will make it so that all values are evaluated.
|
|
tune.grid_search([16, 64, 256]),
|
|
tune.grid_search([16, 64, 256]),
|
|
],
|
|
},
|
|
)
|
|
|
|
.. _tune_custom-search:
|
|
|
|
Custom/Conditional Search Spaces
|
|
--------------------------------
|
|
|
|
You'll often run into awkward search spaces (i.e., when one hyperparameter depends on another). Use ``tune.sample_from(func)`` to provide a **custom** callable function for generating a search space.
|
|
|
|
The parameter ``func`` should take in a ``spec`` object, which has a ``config`` namespace from which you can access other hyperparameters. This is useful for conditional distributions:
|
|
|
|
.. code-block:: python
|
|
|
|
tune.run(
|
|
...,
|
|
config={
|
|
# A random function
|
|
"alpha": tune.sample_from(lambda _: np.random.uniform(100)),
|
|
# Use the `spec.config` namespace to access other hyperparameters
|
|
"beta": tune.sample_from(lambda spec: spec.config.alpha * np.random.normal())
|
|
}
|
|
)
|
|
|
|
Here's an example showing a grid search over two nested parameters combined with random sampling from two lambda functions, generating 9 different trials. Note that the value of ``beta`` depends on the value of ``alpha``, which is represented by referencing ``spec.config.alpha`` in the lambda function. This lets you specify conditional parameter distributions.
|
|
|
|
.. code-block:: python
|
|
:emphasize-lines: 4-11
|
|
|
|
tune.run(
|
|
my_trainable,
|
|
name="my_trainable",
|
|
config={
|
|
"alpha": tune.sample_from(lambda spec: np.random.uniform(100)),
|
|
"beta": tune.sample_from(lambda spec: spec.config.alpha * np.random.normal()),
|
|
"nn_layers": [
|
|
tune.grid_search([16, 64, 256]),
|
|
tune.grid_search([16, 64, 256]),
|
|
],
|
|
}
|
|
)
|
|
|
|
.. _tune-sample-docs:
|
|
|
|
Random Distributions API
|
|
------------------------
|
|
|
|
This section covers the functions you can use to define your search spaces.
|
|
|
|
For a high-level overview, see this example:
|
|
|
|
.. code-block :: python
|
|
|
|
config = {
|
|
# Sample a float uniformly between -5.0 and -1.0
|
|
"uniform": tune.uniform(-5, -1),
|
|
|
|
# Sample a float uniformly between 3.2 and 5.4,
|
|
# rounding to increments of 0.2
|
|
"quniform": tune.quniform(3.2, 5.4, 0.2),
|
|
|
|
# Sample a float uniformly between 0.0001 and 0.01, while
|
|
# sampling in log space
|
|
"loguniform": tune.loguniform(1e-4, 1e-2),
|
|
|
|
# Sample a float uniformly between 0.0001 and 0.1, while
|
|
# sampling in log space and rounding to increments of 0.0005
|
|
"qloguniform": tune.qloguniform(1e-4, 1e-1, 5e-4),
|
|
|
|
# Sample a random float from a normal distribution with
|
|
# mean=10 and sd=2
|
|
"randn": tune.randn(10, 2),
|
|
|
|
# Sample a random float from a normal distribution with
|
|
# mean=10 and sd=2, rounding to increments of 0.2
|
|
"qrandn": tune.qrandn(10, 2, 0.2),
|
|
|
|
# Sample a integer uniformly between -9 (inclusive) and 15 (exclusive)
|
|
"randint": tune.randint(-9, 15),
|
|
|
|
# Sample a integer uniformly between 1 (inclusive) and 10 (exclusive),
|
|
# while sampling in log space
|
|
"lograndint": tune.lograndint(1, 10),
|
|
|
|
# Sample a random uniformly between -21 (inclusive) and 12 (inclusive (!))
|
|
# rounding to increments of 3 (includes 12)
|
|
"qrandint": tune.qrandint(-21, 12, 3),
|
|
|
|
# Sample a integer uniformly between 1 (inclusive) and 10 (inclusive (!)),
|
|
# while sampling in log space and rounding to increments of 2
|
|
"qlograndint": tune.qlograndint(1, 10, 2),
|
|
|
|
# Sample an option uniformly from the specified choices
|
|
"choice": tune.choice(["a", "b", "c"]),
|
|
|
|
# Sample from a random function, in this case one that
|
|
# depends on another value from the search space
|
|
"func": tune.sample_from(lambda spec: spec.config.uniform * 0.01),
|
|
|
|
# Do a grid search over these values. Every value will be sampled
|
|
# `num_samples` times (`num_samples` is the parameter you pass to `tune.run()`)
|
|
"grid": tune.grid_search([32, 64, 128])
|
|
}
|
|
|
|
tune.uniform
|
|
~~~~~~~~~~~~
|
|
|
|
.. autofunction:: ray.tune.uniform
|
|
|
|
tune.quniform
|
|
~~~~~~~~~~~~~
|
|
|
|
.. autofunction:: ray.tune.quniform
|
|
|
|
tune.loguniform
|
|
~~~~~~~~~~~~~~~
|
|
|
|
.. autofunction:: ray.tune.loguniform
|
|
|
|
tune.qloguniform
|
|
~~~~~~~~~~~~~~~~
|
|
|
|
.. autofunction:: ray.tune.qloguniform
|
|
|
|
tune.randn
|
|
~~~~~~~~~~
|
|
|
|
.. autofunction:: ray.tune.randn
|
|
|
|
tune.qrandn
|
|
~~~~~~~~~~~
|
|
|
|
.. autofunction:: ray.tune.qrandn
|
|
|
|
tune.randint
|
|
~~~~~~~~~~~~
|
|
|
|
.. autofunction:: ray.tune.randint
|
|
|
|
tune.qrandint
|
|
~~~~~~~~~~~~~
|
|
|
|
.. autofunction:: ray.tune.qrandint
|
|
|
|
tune.choice
|
|
~~~~~~~~~~~
|
|
|
|
.. autofunction:: ray.tune.choice
|
|
|
|
tune.sample_from
|
|
~~~~~~~~~~~~~~~~
|
|
|
|
.. autofunction:: ray.tune.sample_from
|
|
|
|
Grid Search API
|
|
---------------
|
|
|
|
.. autofunction:: ray.tune.grid_search
|
|
|
|
References
|
|
----------
|
|
|
|
See also :ref:`tune-basicvariant`.
|