ray/rllib/train.py
Antoni Baum c5e1851ab9
[Tune] Improve JupyterNotebookReporter (#24444)
Improves Tune Jupyter notebook experience by modifying the `JupyterNotebookReporter` in two ways:
* Previously, the `overwrite` flag controlled whether the entire cell would be overwritten with the updated table. This caused all the other logs to be cleared. Now, we use IPython display handle functionality to create a table at the top of the cell and update only that, preserving the rest of the output. The `overwrite` flag now controls whether the cell output *prior* to the initialization of `JupyterNotebookReporter` is overwritten or not.
* The Ray Client detection was not working unless the user specifically passed a `JupyterNotebookReporter` as the `progress_reporter`. Now, the default value allows for correct detection of the enviroment while running Ray Client.

Furthermore, the progress reporter detection logic in `rllib/train.py` has been replaced to make use of the `detect_reporter` function for consistency with Tune (the sign in the overwrite condition was similarly flipped).
2022-05-06 11:52:47 +01:00

287 lines
9.1 KiB
Python
Executable file

#!/usr/bin/env python
import argparse
import os
from pathlib import Path
import yaml
import ray
from ray.tune.config_parser import make_parser
from ray.tune.result import DEFAULT_RESULTS_DIR
from ray.tune.resources import resources_to_json
from ray.tune.tune import run_experiments
from ray.tune.schedulers import create_scheduler
from ray.rllib.utils.deprecation import deprecation_warning
from ray.rllib.utils.framework import try_import_tf, try_import_torch
# Try to import both backends for flag checking/warnings.
tf1, tf, tfv = try_import_tf()
torch, _ = try_import_torch()
EXAMPLE_USAGE = """
Training example via RLlib CLI:
rllib train --run DQN --env CartPole-v0
Grid search example via RLlib CLI:
rllib train -f tuned_examples/cartpole-grid-search-example.yaml
Grid search example via executable:
./train.py -f tuned_examples/cartpole-grid-search-example.yaml
Note that -f overrides all other trial-specific command-line options.
"""
def create_parser(parser_creator=None):
parser = make_parser(
parser_creator=parser_creator,
formatter_class=argparse.RawDescriptionHelpFormatter,
description="Train a reinforcement learning agent.",
epilog=EXAMPLE_USAGE,
)
# See also the base parser definition in ray/tune/config_parser.py
parser.add_argument(
"--ray-address",
default=None,
type=str,
help="Connect to an existing Ray cluster at this address instead "
"of starting a new one.",
)
parser.add_argument(
"--ray-ui", action="store_true", help="Whether to enable the Ray web UI."
)
# Deprecated: Use --ray-ui, instead.
parser.add_argument(
"--no-ray-ui",
action="store_true",
help="Deprecated! Ray UI is disabled by default now. "
"Use `--ray-ui` to enable.",
)
parser.add_argument(
"--local-mode",
action="store_true",
help="Run ray in local mode for easier debugging.",
)
parser.add_argument(
"--ray-num-cpus",
default=None,
type=int,
help="--num-cpus to use if starting a new cluster.",
)
parser.add_argument(
"--ray-num-gpus",
default=None,
type=int,
help="--num-gpus to use if starting a new cluster.",
)
parser.add_argument(
"--ray-num-nodes",
default=None,
type=int,
help="Emulate multiple cluster nodes for debugging.",
)
parser.add_argument(
"--ray-object-store-memory",
default=None,
type=int,
help="--object-store-memory to use if starting a new cluster.",
)
parser.add_argument(
"--experiment-name",
default="default",
type=str,
help="Name of the subdirectory under `local_dir` to put results in.",
)
parser.add_argument(
"--local-dir",
default=DEFAULT_RESULTS_DIR,
type=str,
help="Local dir to save training results to. Defaults to '{}'.".format(
DEFAULT_RESULTS_DIR
),
)
parser.add_argument(
"--upload-dir",
default="",
type=str,
help="Optional URI to sync training results to (e.g. s3://bucket).",
)
# This will override any framework setting found in a yaml file.
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default=None,
help="The DL framework specifier.",
)
parser.add_argument(
"-v", action="store_true", help="Whether to use INFO level logging."
)
parser.add_argument(
"-vv", action="store_true", help="Whether to use DEBUG level logging."
)
parser.add_argument(
"--resume",
action="store_true",
help="Whether to attempt to resume previous Tune experiments.",
)
parser.add_argument(
"--trace",
action="store_true",
help="Whether to attempt to enable tracing for eager mode.",
)
parser.add_argument(
"--env", default=None, type=str, help="The gym environment to use."
)
parser.add_argument(
"-f",
"--config-file",
default=None,
type=str,
help="If specified, use config options from this file. Note that this "
"overrides any trial-specific options set via flags above.",
)
# Obsolete: Use --framework=torch|tf2|tfe instead!
parser.add_argument(
"--torch",
action="store_true",
help="Whether to use PyTorch (instead of tf) as the DL framework.",
)
parser.add_argument(
"--eager",
action="store_true",
help="Whether to attempt to enable TF eager execution.",
)
return parser
def run(args, parser):
if args.config_file:
with open(args.config_file) as f:
experiments = yaml.safe_load(f)
else:
# Note: keep this in sync with tune/config_parser.py
experiments = {
args.experiment_name: { # i.e. log to ~/ray_results/default
"run": args.run,
"checkpoint_freq": args.checkpoint_freq,
"checkpoint_at_end": args.checkpoint_at_end,
"keep_checkpoints_num": args.keep_checkpoints_num,
"checkpoint_score_attr": args.checkpoint_score_attr,
"local_dir": args.local_dir,
"resources_per_trial": (
args.resources_per_trial
and resources_to_json(args.resources_per_trial)
),
"stop": args.stop,
"config": dict(args.config, env=args.env),
"restore": args.restore,
"num_samples": args.num_samples,
"sync_config": {
"upload_dir": args.upload_dir,
},
}
}
# Ray UI.
if args.no_ray_ui:
deprecation_warning(old="--no-ray-ui", new="--ray-ui", error=False)
args.ray_ui = False
verbose = 1
for exp in experiments.values():
# Bazel makes it hard to find files specified in `args` (and `data`).
# Look for them here.
# NOTE: Some of our yaml files don't have a `config` section.
input_ = exp.get("config", {}).get("input")
if input_ and input_ != "sampler":
# This script runs in the ray/rllib dir.
rllib_dir = Path(__file__).parent
def patch_path(path):
if isinstance(path, list):
return [patch_path(i) for i in path]
elif isinstance(path, dict):
return {patch_path(k): patch_path(v) for k, v in path.items()}
elif isinstance(path, str):
if os.path.exists(path):
return path
else:
abs_path = str(rllib_dir.absolute().joinpath(path))
return abs_path if os.path.exists(abs_path) else path
else:
return path
exp["config"]["input"] = patch_path(input_)
if not exp.get("run"):
parser.error("the following arguments are required: --run")
if not exp.get("env") and not exp.get("config", {}).get("env"):
parser.error("the following arguments are required: --env")
if args.torch:
deprecation_warning("--torch", "--framework=torch")
exp["config"]["framework"] = "torch"
elif args.eager:
deprecation_warning("--eager", "--framework=[tf2|tfe]")
exp["config"]["framework"] = "tfe"
elif args.framework is not None:
exp["config"]["framework"] = args.framework
if args.trace:
if exp["config"]["framework"] not in ["tf2", "tfe"]:
raise ValueError("Must enable --eager to enable tracing.")
exp["config"]["eager_tracing"] = True
if args.v:
exp["config"]["log_level"] = "INFO"
verbose = 3 # Print details on trial result
if args.vv:
exp["config"]["log_level"] = "DEBUG"
verbose = 3 # Print details on trial result
if args.ray_num_nodes:
# Import this only here so that train.py also works with
# older versions (and user doesn't use `--ray-num-nodes`).
from ray.cluster_utils import Cluster
cluster = Cluster()
for _ in range(args.ray_num_nodes):
cluster.add_node(
num_cpus=args.ray_num_cpus or 1,
num_gpus=args.ray_num_gpus or 0,
object_store_memory=args.ray_object_store_memory,
)
ray.init(address=cluster.address)
else:
ray.init(
include_dashboard=args.ray_ui,
address=args.ray_address,
object_store_memory=args.ray_object_store_memory,
num_cpus=args.ray_num_cpus,
num_gpus=args.ray_num_gpus,
local_mode=args.local_mode,
)
run_experiments(
experiments,
scheduler=create_scheduler(args.scheduler, **args.scheduler_config),
resume=args.resume,
verbose=verbose,
concurrent=True,
)
ray.shutdown()
def main():
parser = create_parser()
args = parser.parse_args()
run(args, parser)
if __name__ == "__main__":
main()