ray/rllib/examples/multi_agent_two_trainers.py

177 lines
5.3 KiB
Python

"""Example of using two different training methods at once in multi-agent.
Here we create a number of CartPole agents, some of which are trained with
DQN, and some of which are trained with PPO. We periodically sync weights
between the two algorithms (note that no such syncing is needed when using just
a single training method).
For a simpler example, see also: multiagent_cartpole.py
"""
import argparse
import gym
import os
import ray
from ray.rllib.algorithms.dqn import DQN, DQNTFPolicy, DQNTorchPolicy
from ray.rllib.algorithms.ppo import (
PPO,
PPOTF1Policy,
PPOTF2Policy,
PPOTorchPolicy,
)
from ray.rllib.examples.env.multi_agent import MultiAgentCartPole
from ray.tune.logger import pretty_print
from ray.tune.registry import register_env
parser = argparse.ArgumentParser()
# Use torch for both policies.
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.",
)
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.",
)
parser.add_argument(
"--stop-iters", type=int, default=20, help="Number of iterations to train."
)
parser.add_argument(
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
)
parser.add_argument(
"--stop-reward", type=float, default=50.0, help="Reward at which we stop training."
)
if __name__ == "__main__":
args = parser.parse_args()
ray.init()
# Simple environment with 4 independent cartpole entities
register_env(
"multi_agent_cartpole", lambda _: MultiAgentCartPole({"num_agents": 4})
)
single_dummy_env = gym.make("CartPole-v0")
obs_space = single_dummy_env.observation_space
act_space = single_dummy_env.action_space
def seelct_policy(algorithm, framework):
if algorithm == "PPO":
if framework == "torch":
return PPOTorchPolicy
elif framework == "tf":
return PPOTF1Policy
else:
return PPOTF2Policy
elif algorithm == "DQN":
if framework == "torch":
return DQNTorchPolicy
else:
return DQNTFPolicy
else:
raise ValueError("Unknown algorithm: ", algorithm)
# You can also have multiple policies per algorithm, but here we just
# show one each for PPO and DQN.
policies = {
"ppo_policy": (
seelct_policy("PPO", args.framework),
obs_space,
act_space,
{},
),
"dqn_policy": (
seelct_policy("DQN", args.framework),
obs_space,
act_space,
{},
),
}
def policy_mapping_fn(agent_id, episode, worker, **kwargs):
if agent_id % 2 == 0:
return "ppo_policy"
else:
return "dqn_policy"
ppo = PPO(
env="multi_agent_cartpole",
config={
"multiagent": {
"policies": policies,
"policy_mapping_fn": policy_mapping_fn,
"policies_to_train": ["ppo_policy"],
},
"model": {
"vf_share_layers": True,
},
"num_sgd_iter": 6,
"vf_loss_coeff": 0.01,
# disable filters, otherwise we would need to synchronize those
# as well to the DQN agent
"observation_filter": "MeanStdFilter",
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"framework": args.framework,
},
)
dqn = DQN(
env="multi_agent_cartpole",
config={
"multiagent": {
"policies": policies,
"policy_mapping_fn": policy_mapping_fn,
"policies_to_train": ["dqn_policy"],
},
"model": {
"vf_share_layers": True,
},
"gamma": 0.95,
"n_step": 3,
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"framework": args.framework,
},
)
# You should see both the printed X and Y approach 200 as this trains:
# info:
# policy_reward_mean:
# dqn_policy: X
# ppo_policy: Y
for i in range(args.stop_iters):
print("== Iteration", i, "==")
# improve the DQN policy
print("-- DQN --")
result_dqn = dqn.train()
print(pretty_print(result_dqn))
# improve the PPO policy
print("-- PPO --")
result_ppo = ppo.train()
print(pretty_print(result_ppo))
# Test passed gracefully.
if (
args.as_test
and result_dqn["episode_reward_mean"] > args.stop_reward
and result_ppo["episode_reward_mean"] > args.stop_reward
):
print("test passed (both agents above requested reward)")
quit(0)
# swap weights to synchronize
dqn.set_weights(ppo.get_weights(["ppo_policy"]))
ppo.set_weights(dqn.get_weights(["dqn_policy"]))
# Desired reward not reached.
if args.as_test:
raise ValueError("Desired reward ({}) not reached!".format(args.stop_reward))