ray/doc/source/ray-overview/doc_test/ray_tune.py
Max Pumperla d6bff736f3
[docs] test ray.io snippets (#22822)
Tests all snippets we have on ray.io. There were some minor issues, which I'll fix upstream.

Signed-off-by: Max Pumperla <max.pumperla@googlemail.com>
2022-03-08 15:50:57 +00:00

29 lines
799 B
Python

from ray import tune
def objective(step, alpha, beta):
return (0.1 + alpha * step / 100) ** (-1) + beta * 0.1
def training_function(config):
# Hyperparameters
alpha, beta = config["alpha"], config["beta"]
for step in range(10):
# Iterative training function - can be any arbitrary training procedure.
intermediate_score = objective(step, alpha, beta)
# Feed the score back back to Tune.
tune.report(mean_loss=intermediate_score)
analysis = tune.run(
training_function,
config={
"alpha": tune.grid_search([0.001, 0.01, 0.1]),
"beta": tune.choice([1, 2, 3]),
},
)
print("Best config: ", analysis.get_best_config(metric="mean_loss", mode="min"))
# Get a dataframe for analyzing trial results.
df = analysis.results_df