ray/rllib/agents/dqn/dqn_torch_policy.py
2020-11-27 16:25:47 -08:00

405 lines
16 KiB
Python

"""PyTorch policy class used for DQN"""
from typing import Dict, List, Tuple
import gym
import ray
from ray.rllib.agents.a3c.a3c_torch_policy import apply_grad_clipping
from ray.rllib.agents.dqn.dqn_tf_policy import (
PRIO_WEIGHTS, Q_SCOPE, Q_TARGET_SCOPE, postprocess_nstep_and_prio)
from ray.rllib.agents.dqn.dqn_torch_model import DQNTorchModel
from ray.rllib.agents.dqn.simple_q_torch_policy import TargetNetworkMixin
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.torch.torch_action_dist import (TorchCategorical,
TorchDistributionWrapper)
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.torch_policy import LearningRateSchedule
from ray.rllib.policy.torch_policy_template import build_torch_policy
from ray.rllib.utils.error import UnsupportedSpaceException
from ray.rllib.utils.exploration.parameter_noise import ParameterNoise
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.torch_ops import (FLOAT_MIN, huber_loss,
reduce_mean_ignore_inf,
softmax_cross_entropy_with_logits)
from ray.rllib.utils.typing import TensorType, TrainerConfigDict
torch, nn = try_import_torch()
F = None
if nn:
F = nn.functional
class QLoss:
def __init__(self,
q_t_selected: TensorType,
q_logits_t_selected: TensorType,
q_tp1_best: TensorType,
q_probs_tp1_best: TensorType,
importance_weights: TensorType,
rewards: TensorType,
done_mask: TensorType,
gamma=0.99,
n_step=1,
num_atoms=1,
v_min=-10.0,
v_max=10.0):
if num_atoms > 1:
# Distributional Q-learning which corresponds to an entropy loss
z = torch.range(
0.0, num_atoms - 1, dtype=torch.float32).to(rewards.device)
z = v_min + z * (v_max - v_min) / float(num_atoms - 1)
# (batch_size, 1) * (1, num_atoms) = (batch_size, num_atoms)
r_tau = torch.unsqueeze(
rewards, -1) + gamma**n_step * torch.unsqueeze(
1.0 - done_mask, -1) * torch.unsqueeze(z, 0)
r_tau = torch.clamp(r_tau, v_min, v_max)
b = (r_tau - v_min) / ((v_max - v_min) / float(num_atoms - 1))
lb = torch.floor(b)
ub = torch.ceil(b)
# Indispensable judgement which is missed in most implementations
# when b happens to be an integer, lb == ub, so pr_j(s', a*) will
# be discarded because (ub-b) == (b-lb) == 0.
floor_equal_ceil = (ub - lb < 0.5).float()
# (batch_size, num_atoms, num_atoms)
l_project = F.one_hot(lb.long(), num_atoms)
# (batch_size, num_atoms, num_atoms)
u_project = F.one_hot(ub.long(), num_atoms)
ml_delta = q_probs_tp1_best * (ub - b + floor_equal_ceil)
mu_delta = q_probs_tp1_best * (b - lb)
ml_delta = torch.sum(
l_project * torch.unsqueeze(ml_delta, -1), dim=1)
mu_delta = torch.sum(
u_project * torch.unsqueeze(mu_delta, -1), dim=1)
m = ml_delta + mu_delta
# Rainbow paper claims that using this cross entropy loss for
# priority is robust and insensitive to `prioritized_replay_alpha`
self.td_error = softmax_cross_entropy_with_logits(
logits=q_logits_t_selected, labels=m)
self.loss = torch.mean(self.td_error * importance_weights)
self.stats = {
# TODO: better Q stats for dist dqn
"mean_td_error": torch.mean(self.td_error),
}
else:
q_tp1_best_masked = (1.0 - done_mask) * q_tp1_best
# compute RHS of bellman equation
q_t_selected_target = rewards + gamma**n_step * q_tp1_best_masked
# compute the error (potentially clipped)
self.td_error = q_t_selected - q_t_selected_target.detach()
self.loss = torch.mean(
importance_weights.float() * huber_loss(self.td_error))
self.stats = {
"mean_q": torch.mean(q_t_selected),
"min_q": torch.min(q_t_selected),
"max_q": torch.max(q_t_selected),
"mean_td_error": torch.mean(self.td_error),
}
class ComputeTDErrorMixin:
"""Assign the `compute_td_error` method to the DQNTorchPolicy
This allows us to prioritize on the worker side.
"""
def __init__(self):
def compute_td_error(obs_t, act_t, rew_t, obs_tp1, done_mask,
importance_weights):
input_dict = self._lazy_tensor_dict({SampleBatch.CUR_OBS: obs_t})
input_dict[SampleBatch.ACTIONS] = act_t
input_dict[SampleBatch.REWARDS] = rew_t
input_dict[SampleBatch.NEXT_OBS] = obs_tp1
input_dict[SampleBatch.DONES] = done_mask
input_dict[PRIO_WEIGHTS] = importance_weights
# Do forward pass on loss to update td error attribute
build_q_losses(self, self.model, None, input_dict)
return self.q_loss.td_error
self.compute_td_error = compute_td_error
def build_q_model_and_distribution(
policy: Policy, obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: TrainerConfigDict) -> Tuple[ModelV2, TorchDistributionWrapper]:
"""Build q_model and target_q_model for DQN
Args:
policy (Policy): The policy, which will use the model for optimization.
obs_space (gym.spaces.Space): The policy's observation space.
action_space (gym.spaces.Space): The policy's action space.
config (TrainerConfigDict):
Returns:
(q_model, TorchCategorical)
Note: The target q model will not be returned, just assigned to
`policy.target_q_model`.
"""
if not isinstance(action_space, gym.spaces.Discrete):
raise UnsupportedSpaceException(
"Action space {} is not supported for DQN.".format(action_space))
if config["hiddens"]:
# try to infer the last layer size, otherwise fall back to 256
num_outputs = ([256] + config["model"]["fcnet_hiddens"])[-1]
config["model"]["no_final_linear"] = True
else:
num_outputs = action_space.n
# TODO(sven): Move option to add LayerNorm after each Dense
# generically into ModelCatalog.
add_layer_norm = (
isinstance(getattr(policy, "exploration", None), ParameterNoise)
or config["exploration_config"]["type"] == "ParameterNoise")
policy.q_model = ModelCatalog.get_model_v2(
obs_space=obs_space,
action_space=action_space,
num_outputs=num_outputs,
model_config=config["model"],
framework="torch",
model_interface=DQNTorchModel,
name=Q_SCOPE,
q_hiddens=config["hiddens"],
dueling=config["dueling"],
num_atoms=config["num_atoms"],
use_noisy=config["noisy"],
v_min=config["v_min"],
v_max=config["v_max"],
sigma0=config["sigma0"],
# TODO(sven): Move option to add LayerNorm after each Dense
# generically into ModelCatalog.
add_layer_norm=add_layer_norm)
policy.q_func_vars = policy.q_model.variables()
policy.target_q_model = ModelCatalog.get_model_v2(
obs_space=obs_space,
action_space=action_space,
num_outputs=num_outputs,
model_config=config["model"],
framework="torch",
model_interface=DQNTorchModel,
name=Q_TARGET_SCOPE,
q_hiddens=config["hiddens"],
dueling=config["dueling"],
num_atoms=config["num_atoms"],
use_noisy=config["noisy"],
v_min=config["v_min"],
v_max=config["v_max"],
sigma0=config["sigma0"],
# TODO(sven): Move option to add LayerNorm after each Dense
# generically into ModelCatalog.
add_layer_norm=add_layer_norm)
policy.target_q_func_vars = policy.target_q_model.variables()
return policy.q_model, TorchCategorical
def get_distribution_inputs_and_class(
policy: Policy,
model: ModelV2,
obs_batch: TensorType,
*,
explore: bool = True,
is_training: bool = False,
**kwargs) -> Tuple[TensorType, type, List[TensorType]]:
q_vals = compute_q_values(policy, model, obs_batch, explore, is_training)
q_vals = q_vals[0] if isinstance(q_vals, tuple) else q_vals
policy.q_values = q_vals
return policy.q_values, TorchCategorical, [] # state-out
def build_q_losses(policy: Policy, model, _,
train_batch: SampleBatch) -> TensorType:
"""Constructs the loss for DQNTorchPolicy.
Args:
policy (Policy): The Policy to calculate the loss for.
model (ModelV2): The Model to calculate the loss for.
train_batch (SampleBatch): The training data.
Returns:
TensorType: A single loss tensor.
"""
config = policy.config
# Q-network evaluation.
q_t, q_logits_t, q_probs_t = compute_q_values(
policy,
policy.q_model,
train_batch[SampleBatch.CUR_OBS],
explore=False,
is_training=True)
# Target Q-network evaluation.
q_tp1, q_logits_tp1, q_probs_tp1 = compute_q_values(
policy,
policy.target_q_model,
train_batch[SampleBatch.NEXT_OBS],
explore=False,
is_training=True)
# Q scores for actions which we know were selected in the given state.
one_hot_selection = F.one_hot(train_batch[SampleBatch.ACTIONS].long(),
policy.action_space.n)
q_t_selected = torch.sum(
torch.where(q_t > FLOAT_MIN, q_t,
torch.tensor(0.0, device=policy.device)) *
one_hot_selection, 1)
q_logits_t_selected = torch.sum(
q_logits_t * torch.unsqueeze(one_hot_selection, -1), 1)
# compute estimate of best possible value starting from state at t + 1
if config["double_q"]:
q_tp1_using_online_net, q_logits_tp1_using_online_net, \
q_dist_tp1_using_online_net = compute_q_values(
policy,
policy.q_model,
train_batch[SampleBatch.NEXT_OBS],
explore=False,
is_training=True)
q_tp1_best_using_online_net = torch.argmax(q_tp1_using_online_net, 1)
q_tp1_best_one_hot_selection = F.one_hot(q_tp1_best_using_online_net,
policy.action_space.n)
q_tp1_best = torch.sum(
torch.where(q_tp1 > FLOAT_MIN, q_tp1,
torch.tensor(0.0, device=policy.device)) *
q_tp1_best_one_hot_selection, 1)
q_probs_tp1_best = torch.sum(
q_probs_tp1 * torch.unsqueeze(q_tp1_best_one_hot_selection, -1), 1)
else:
q_tp1_best_one_hot_selection = F.one_hot(
torch.argmax(q_tp1, 1), policy.action_space.n)
q_tp1_best = torch.sum(
torch.where(q_tp1 > FLOAT_MIN, q_tp1,
torch.tensor(0.0, device=policy.device)) *
q_tp1_best_one_hot_selection, 1)
q_probs_tp1_best = torch.sum(
q_probs_tp1 * torch.unsqueeze(q_tp1_best_one_hot_selection, -1), 1)
policy.q_loss = QLoss(
q_t_selected, q_logits_t_selected, q_tp1_best, q_probs_tp1_best,
train_batch[PRIO_WEIGHTS], train_batch[SampleBatch.REWARDS],
train_batch[SampleBatch.DONES].float(), config["gamma"],
config["n_step"], config["num_atoms"], config["v_min"],
config["v_max"])
return policy.q_loss.loss
def adam_optimizer(policy: Policy,
config: TrainerConfigDict) -> "torch.optim.Optimizer":
return torch.optim.Adam(
policy.q_func_vars, lr=policy.cur_lr, eps=config["adam_epsilon"])
def build_q_stats(policy: Policy, batch) -> Dict[str, TensorType]:
return dict({
"cur_lr": policy.cur_lr,
}, **policy.q_loss.stats)
def setup_early_mixins(policy: Policy, obs_space, action_space,
config: TrainerConfigDict) -> None:
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
def before_loss_init(policy: Policy, obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: TrainerConfigDict) -> None:
ComputeTDErrorMixin.__init__(policy)
TargetNetworkMixin.__init__(policy, obs_space, action_space, config)
# Move target net to device (this is done automatically for the
# policy.model, but not for any other models the policy has).
policy.target_q_model = policy.target_q_model.to(policy.device)
def compute_q_values(policy: Policy,
model: ModelV2,
obs: TensorType,
explore,
is_training: bool = False):
config = policy.config
model_out, state = model({
SampleBatch.CUR_OBS: obs,
"is_training": is_training,
}, [], None)
if config["num_atoms"] > 1:
(action_scores, z, support_logits_per_action, logits,
probs_or_logits) = model.get_q_value_distributions(model_out)
else:
(action_scores, logits,
probs_or_logits) = model.get_q_value_distributions(model_out)
if config["dueling"]:
state_score = model.get_state_value(model_out)
if policy.config["num_atoms"] > 1:
support_logits_per_action_mean = torch.mean(
support_logits_per_action, dim=1)
support_logits_per_action_centered = (
support_logits_per_action - torch.unsqueeze(
support_logits_per_action_mean, dim=1))
support_logits_per_action = torch.unsqueeze(
state_score, dim=1) + support_logits_per_action_centered
support_prob_per_action = nn.functional.softmax(
support_logits_per_action)
value = torch.sum(z * support_prob_per_action, dim=-1)
logits = support_logits_per_action
probs_or_logits = support_prob_per_action
else:
advantages_mean = reduce_mean_ignore_inf(action_scores, 1)
advantages_centered = action_scores - torch.unsqueeze(
advantages_mean, 1)
value = state_score + advantages_centered
else:
value = action_scores
return value, logits, probs_or_logits
def grad_process_and_td_error_fn(policy: Policy,
optimizer: "torch.optim.Optimizer",
loss: TensorType) -> Dict[str, TensorType]:
# Clip grads if configured.
return apply_grad_clipping(policy, optimizer, loss)
def extra_action_out_fn(policy: Policy, input_dict, state_batches, model,
action_dist) -> Dict[str, TensorType]:
return {"q_values": policy.q_values}
DQNTorchPolicy = build_torch_policy(
name="DQNTorchPolicy",
loss_fn=build_q_losses,
get_default_config=lambda: ray.rllib.agents.dqn.dqn.DEFAULT_CONFIG,
make_model_and_action_dist=build_q_model_and_distribution,
action_distribution_fn=get_distribution_inputs_and_class,
stats_fn=build_q_stats,
postprocess_fn=postprocess_nstep_and_prio,
optimizer_fn=adam_optimizer,
extra_grad_process_fn=grad_process_and_td_error_fn,
extra_learn_fetches_fn=lambda policy: {"td_error": policy.q_loss.td_error},
extra_action_out_fn=extra_action_out_fn,
before_init=setup_early_mixins,
before_loss_init=before_loss_init,
mixins=[
TargetNetworkMixin,
ComputeTDErrorMixin,
LearningRateSchedule,
])