ray/rllib/agents/dqn/dqn.py
Sven Mika 19c8033df2
[RLlib] Fix most remaining RLlib algos for running with trajectory view API. (#12366)
* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* LINT and fixes.
MB-MPO and MAML not working yet.

* wip

* update

* update

* rmeove

* remove dep

* higher

* Update requirements_rllib.txt

* Update requirements_rllib.txt

* relpos

* no mbmpo

Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-12-01 17:41:10 -08:00

286 lines
12 KiB
Python

"""
Deep Q-Networks (DQN, Rainbow, Parametric DQN)
==============================================
This file defines the distributed Trainer class for the Deep Q-Networks
algorithm. See `dqn_[tf|torch]_policy.py` for the definition of the policies.
Detailed documentation:
https://docs.ray.io/en/master/rllib-algorithms.html#deep-q-networks-dqn-rainbow-parametric-dqn
""" # noqa: E501
import logging
from typing import List, Optional, Type
from ray.rllib.agents.dqn.dqn_tf_policy import DQNTFPolicy
from ray.rllib.agents.dqn.dqn_torch_policy import DQNTorchPolicy
from ray.rllib.agents.trainer import with_common_config
from ray.rllib.agents.trainer_template import build_trainer
from ray.rllib.evaluation.worker_set import WorkerSet
from ray.rllib.execution.concurrency_ops import Concurrently
from ray.rllib.execution.metric_ops import StandardMetricsReporting
from ray.rllib.execution.replay_buffer import LocalReplayBuffer
from ray.rllib.execution.replay_ops import Replay, StoreToReplayBuffer
from ray.rllib.execution.rollout_ops import ParallelRollouts
from ray.rllib.execution.train_ops import TrainOneStep, UpdateTargetNetwork
from ray.rllib.policy.policy import LEARNER_STATS_KEY, Policy
from ray.rllib.utils.typing import TrainerConfigDict
from ray.util.iter import LocalIterator
logger = logging.getLogger(__name__)
# yapf: disable
# __sphinx_doc_begin__
DEFAULT_CONFIG = with_common_config({
# === Model ===
# Number of atoms for representing the distribution of return. When
# this is greater than 1, distributional Q-learning is used.
# the discrete supports are bounded by v_min and v_max
"num_atoms": 1,
"v_min": -10.0,
"v_max": 10.0,
# Whether to use noisy network
"noisy": False,
# control the initial value of noisy nets
"sigma0": 0.5,
# Whether to use dueling dqn
"dueling": True,
# Dense-layer setup for each the advantage branch and the value branch
# in a dueling architecture.
"hiddens": [256],
# Whether to use double dqn
"double_q": True,
# N-step Q learning
"n_step": 1,
# === Exploration Settings ===
"exploration_config": {
# The Exploration class to use.
"type": "EpsilonGreedy",
# Config for the Exploration class' constructor:
"initial_epsilon": 1.0,
"final_epsilon": 0.02,
"epsilon_timesteps": 10000, # Timesteps over which to anneal epsilon.
# For soft_q, use:
# "exploration_config" = {
# "type": "SoftQ"
# "temperature": [float, e.g. 1.0]
# }
},
# Switch to greedy actions in evaluation workers.
"evaluation_config": {
"explore": False,
},
# Minimum env steps to optimize for per train call. This value does
# not affect learning, only the length of iterations.
"timesteps_per_iteration": 1000,
# Update the target network every `target_network_update_freq` steps.
"target_network_update_freq": 500,
# === Replay buffer ===
# Size of the replay buffer. Note that if async_updates is set, then
# each worker will have a replay buffer of this size.
"buffer_size": 50000,
# If True prioritized replay buffer will be used.
"prioritized_replay": True,
# Alpha parameter for prioritized replay buffer.
"prioritized_replay_alpha": 0.6,
# Beta parameter for sampling from prioritized replay buffer.
"prioritized_replay_beta": 0.4,
# Final value of beta (by default, we use constant beta=0.4).
"final_prioritized_replay_beta": 0.4,
# Time steps over which the beta parameter is annealed.
"prioritized_replay_beta_annealing_timesteps": 20000,
# Epsilon to add to the TD errors when updating priorities.
"prioritized_replay_eps": 1e-6,
# Whether to LZ4 compress observations
"compress_observations": False,
# Callback to run before learning on a multi-agent batch of experiences.
"before_learn_on_batch": None,
# If set, this will fix the ratio of replayed from a buffer and learned on
# timesteps to sampled from an environment and stored in the replay buffer
# timesteps. Otherwise, the replay will proceed at the native ratio
# determined by (train_batch_size / rollout_fragment_length).
"training_intensity": None,
# === Optimization ===
# Learning rate for adam optimizer
"lr": 5e-4,
# Learning rate schedule
"lr_schedule": None,
# Adam epsilon hyper parameter
"adam_epsilon": 1e-8,
# If not None, clip gradients during optimization at this value
"grad_clip": 40,
# How many steps of the model to sample before learning starts.
"learning_starts": 1000,
# Update the replay buffer with this many samples at once. Note that
# this setting applies per-worker if num_workers > 1.
"rollout_fragment_length": 4,
# Size of a batch sampled from replay buffer for training. Note that
# if async_updates is set, then each worker returns gradients for a
# batch of this size.
"train_batch_size": 32,
# === Parallelism ===
# Number of workers for collecting samples with. This only makes sense
# to increase if your environment is particularly slow to sample, or if
# you"re using the Async or Ape-X optimizers.
"num_workers": 0,
# Whether to compute priorities on workers.
"worker_side_prioritization": False,
# Prevent iterations from going lower than this time span
"min_iter_time_s": 1,
})
# __sphinx_doc_end__
# yapf: enable
def validate_config(config: TrainerConfigDict) -> None:
"""Checks and updates the config based on settings.
Rewrites rollout_fragment_length to take into account n_step truncation.
"""
if config["exploration_config"]["type"] == "ParameterNoise":
if config["batch_mode"] != "complete_episodes":
logger.warning(
"ParameterNoise Exploration requires `batch_mode` to be "
"'complete_episodes'. Setting batch_mode=complete_episodes.")
config["batch_mode"] = "complete_episodes"
if config.get("noisy", False):
raise ValueError(
"ParameterNoise Exploration and `noisy` network cannot be "
"used at the same time!")
# Update effective batch size to include n-step
adjusted_batch_size = max(config["rollout_fragment_length"],
config.get("n_step", 1))
config["rollout_fragment_length"] = adjusted_batch_size
if config.get("prioritized_replay"):
if config["multiagent"]["replay_mode"] == "lockstep":
raise ValueError("Prioritized replay is not supported when "
"replay_mode=lockstep.")
elif config["replay_sequence_length"] > 1:
raise ValueError("Prioritized replay is not supported when "
"replay_sequence_length > 1.")
def execution_plan(workers: WorkerSet,
config: TrainerConfigDict) -> LocalIterator[dict]:
"""Execution plan of the DQN algorithm. Defines the distributed dataflow.
Args:
workers (WorkerSet): The WorkerSet for training the Polic(y/ies)
of the Trainer.
config (TrainerConfigDict): The trainer's configuration dict.
Returns:
LocalIterator[dict]: A local iterator over training metrics.
"""
if config.get("prioritized_replay"):
prio_args = {
"prioritized_replay_alpha": config["prioritized_replay_alpha"],
"prioritized_replay_beta": config["prioritized_replay_beta"],
"prioritized_replay_eps": config["prioritized_replay_eps"],
}
else:
prio_args = {}
local_replay_buffer = LocalReplayBuffer(
num_shards=1,
learning_starts=config["learning_starts"],
buffer_size=config["buffer_size"],
replay_batch_size=config["train_batch_size"],
replay_mode=config["multiagent"]["replay_mode"],
replay_sequence_length=config["replay_sequence_length"],
**prio_args)
rollouts = ParallelRollouts(workers, mode="bulk_sync")
# We execute the following steps concurrently:
# (1) Generate rollouts and store them in our local replay buffer. Calling
# next() on store_op drives this.
store_op = rollouts.for_each(
StoreToReplayBuffer(local_buffer=local_replay_buffer))
def update_prio(item):
samples, info_dict = item
if config.get("prioritized_replay"):
prio_dict = {}
for policy_id, info in info_dict.items():
# TODO(sven): This is currently structured differently for
# torch/tf. Clean up these results/info dicts across
# policies (note: fixing this in torch_policy.py will
# break e.g. DDPPO!).
td_error = info.get("td_error",
info[LEARNER_STATS_KEY].get("td_error"))
prio_dict[policy_id] = (samples.policy_batches[policy_id]
.data.get("batch_indexes"), td_error)
local_replay_buffer.update_priorities(prio_dict)
return info_dict
# (2) Read and train on experiences from the replay buffer. Every batch
# returned from the LocalReplay() iterator is passed to TrainOneStep to
# take a SGD step, and then we decide whether to update the target network.
post_fn = config.get("before_learn_on_batch") or (lambda b, *a: b)
replay_op = Replay(local_buffer=local_replay_buffer) \
.for_each(lambda x: post_fn(x, workers, config)) \
.for_each(TrainOneStep(workers)) \
.for_each(update_prio) \
.for_each(UpdateTargetNetwork(
workers, config["target_network_update_freq"]))
# Alternate deterministically between (1) and (2). Only return the output
# of (2) since training metrics are not available until (2) runs.
train_op = Concurrently(
[store_op, replay_op],
mode="round_robin",
output_indexes=[1],
round_robin_weights=calculate_rr_weights(config))
return StandardMetricsReporting(train_op, workers, config)
def calculate_rr_weights(config: TrainerConfigDict) -> List[float]:
"""Calculate the round robin weights for the rollout and train steps"""
if not config["training_intensity"]:
return [1, 1]
# e.g., 32 / 4 -> native ratio of 8.0
native_ratio = (
config["train_batch_size"] / config["rollout_fragment_length"])
# Training intensity is specified in terms of
# (steps_replayed / steps_sampled), so adjust for the native ratio.
weights = [1, config["training_intensity"] / native_ratio]
return weights
def get_policy_class(config: TrainerConfigDict) -> Optional[Type[Policy]]:
"""Policy class picker function. Class is chosen based on DL-framework.
Args:
config (TrainerConfigDict): The trainer's configuration dict.
Returns:
Optional[Type[Policy]]: The Policy class to use with DQNTrainer.
If None, use `default_policy` provided in build_trainer().
"""
if config["framework"] == "torch":
return DQNTorchPolicy
# Build a generic off-policy trainer. Other trainers (such as DDPGTrainer)
# may build on top of it.
GenericOffPolicyTrainer = build_trainer(
name="GenericOffPolicyAlgorithm",
default_policy=None,
get_policy_class=get_policy_class,
default_config=DEFAULT_CONFIG,
validate_config=validate_config,
execution_plan=execution_plan)
# Build a DQN trainer, which uses the framework specific Policy
# determined in `get_policy_class()` above.
DQNTrainer = GenericOffPolicyTrainer.with_updates(
name="DQN", default_policy=DQNTFPolicy, default_config=DEFAULT_CONFIG)