ray/test/jenkins_tests/run_multi_node_tests.sh
Eric Liang b197c0c404
[rllib] General RNN support (#2299)
* wip

* cls

* re

* wip

* wip

* a3c working

* torch support

* pg works

* lint

* rm v2

* consumer id

* clean up pg

* clean up more

* fix python 2.7

* tf session management

* docs

* dqn wip

* fix compile

* dqn

* apex runs

* up

* impotrs

* ddpg

* quotes

* fix tests

* fix last r

* fix tests

* lint

* pass checkpoint restore

* kwar

* nits

* policy graph

* fix yapf

* com

* class

* pyt

* vectorization

* update

* test cpe

* unit test

* fix ddpg2

* changes

* wip

* args

* faster test

* common

* fix

* add alg option

* batch mode and policy serving

* multi serving test

* todo

* wip

* serving test

* doc async env

* num envs

* comments

* thread

* remove init hook

* update

* fix ppo

* comments1

* fix

* updates

* add jenkins tests

* fix

* fix pytorch

* fix

* fixes

* fix a3c policy

* fix squeeze

* fix trunc on apex

* fix squeezing for real

* update

* remove horizon test for now

* multiagent wip

* update

* fix race condition

* fix ma

* t

* doc

* st

* wip

* example

* wip

* working

* cartpole

* wip

* batch wip

* fix bug

* make other_batches None default

* working

* debug

* nit

* warn

* comments

* fix ppo

* fix obs filter

* update

* wip

* tf

* update

* fix

* cleanup

* cleanup

* spacing

* model

* fix

* dqn

* fix ddpg

* doc

* keep names

* update

* fix

* com

* docs

* clarify model outputs

* Update torch_policy_graph.py

* fix obs filter

* pass thru worker index

* fix

* rename

* vlad torch comments

* fix log action

* debug name

* fix lstm

* remove unused ddpg net

* remove conv net

* revert lstm

* wip

* wip

* cast

* wip

* works

* fix a3c

* works

* lstm util test

* doc

* clean up

* update

* fix lstm check

* move to end

* fix sphinx

* fix cmd

* remove bad doc

* clarify

* copy

* async sa

* fix

* comments

* fix a3c conf

* tune lstm

* fix reshape

* fix

* back to 16

* tuned a3c update

* update

* tuned

* optional

* fix catalog

* remove prep
2018-06-27 22:51:04 -07:00

259 lines
9.7 KiB
Bash
Executable file

#!/usr/bin/env bash
# Cause the script to exit if a single command fails.
set -e
# Show explicitly which commands are currently running.
set -x
ROOT_DIR=$(cd "$(dirname "${BASH_SOURCE:-$0}")"; pwd)
DOCKER_SHA=$($ROOT_DIR/../../build-docker.sh --output-sha --no-cache)
echo "Using Docker image" $DOCKER_SHA
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env PongDeterministic-v0 \
--run A3C \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 16}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v1 \
--run PPO \
--stop '{"training_iteration": 2}' \
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "model": {"free_log_std": true}}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v1 \
--run PPO \
--stop '{"training_iteration": 2}' \
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "use_gae": false}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env Pendulum-v0 \
--run ES \
--stop '{"training_iteration": 2}' \
--config '{"stepsize": 0.01, "episodes_per_batch": 20, "timesteps_per_batch": 100}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env Pong-v0 \
--run ES \
--stop '{"training_iteration": 2}' \
--config '{"stepsize": 0.01, "episodes_per_batch": 20, "timesteps_per_batch": 100}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run A3C \
--stop '{"training_iteration": 2}' \
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run DQN \
--stop '{"training_iteration": 2}' \
--config '{"lr": 1e-3, "schedule_max_timesteps": 100000, "exploration_fraction": 0.1, "exploration_final_eps": 0.02, "dueling": false, "hiddens": [], "model": {"fcnet_hiddens": [64], "fcnet_activation": "relu"}}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run DQN \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 2}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run APEX \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 2, "timesteps_per_iteration": 1000, "gpu": false}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env FrozenLake-v0 \
--run DQN \
--stop '{"training_iteration": 2}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env FrozenLake-v0 \
--run PPO \
--stop '{"training_iteration": 2}' \
--config '{"num_sgd_iter": 10, "sgd_batchsize": 64, "timesteps_per_batch": 1000, "num_workers": 1}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env PongDeterministic-v4 \
--run DQN \
--stop '{"training_iteration": 2}' \
--config '{"lr": 1e-4, "schedule_max_timesteps": 2000000, "buffer_size": 10000, "exploration_fraction": 0.1, "exploration_final_eps": 0.01, "sample_batch_size": 4, "learning_starts": 10000, "target_network_update_freq": 1000, "gamma": 0.99, "prioritized_replay": true}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env MontezumaRevenge-v0 \
--run PPO \
--stop '{"training_iteration": 2}' \
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "model": {"dim": 40, "conv_filters": [[16, [8, 8], 4], [32, [4, 4], 2], [512, [5, 5], 1]]}, "extra_frameskip": 4}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env PongDeterministic-v4 \
--run A3C \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 2, "use_pytorch": true, "model": {"use_lstm": false, "grayscale": true, "zero_mean": false, "dim": 80, "channel_major": true}}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v1 \
--run A3C \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 2, "use_pytorch": true}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run DQN \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 2}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run PG \
--stop '{"training_iteration": 2}' \
--config '{"batch_size": 500, "num_workers": 1}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run PG \
--stop '{"training_iteration": 2}' \
--config '{"batch_size": 500, "num_workers": 1, "model": {"use_lstm": true, "max_seq_len": 100}}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--run PG \
--stop '{"training_iteration": 2}' \
--config '{"batch_size": 500, "num_workers": 1, "num_envs": 10}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env Pong-v0 \
--run PG \
--stop '{"training_iteration": 2}' \
--config '{"batch_size": 500, "num_workers": 1}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env FrozenLake-v0 \
--run PG \
--stop '{"training_iteration": 2}' \
--config '{"batch_size": 500, "num_workers": 1}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env Pendulum-v0 \
--run DDPG \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 1}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env MountainCarContinuous-v0 \
--run DDPG \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 1}'
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
sh /ray/test/jenkins_tests/multi_node_tests/test_rllib_eval.sh
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/test/test_checkpoint_restore.py
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/test/test_common_policy_evaluator.py
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/test/test_serving_env.py
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/test/test_lstm.py
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/test/test_multi_agent_env.py
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/test/test_supported_spaces.py
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/tune_mnist_ray.py \
--smoke-test
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/pbt_example.py \
--smoke-test
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/hyperband_example.py \
--smoke-test
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/async_hyperband_example.py \
--smoke-test
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/tune_mnist_ray_hyperband.py \
--smoke-test
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/tune_mnist_async_hyperband.py \
--smoke-test
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/examples/hyperopt_example.py \
--smoke-test
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/examples/legacy_multiagent/multiagent_mountaincar.py
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/examples/legacy_multiagent/multiagent_pendulum.py
docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/examples/multiagent_cartpole.py
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=5 \
--num-redis-shards=10 \
--test-script=/ray/test/jenkins_tests/multi_node_tests/test_0.py
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=5 \
--num-redis-shards=5 \
--num-gpus=0,1,2,3,4 \
--num-drivers=7 \
--driver-locations=0,1,0,1,2,3,4 \
--test-script=/ray/test/jenkins_tests/multi_node_tests/remove_driver_test.py
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=5 \
--num-redis-shards=2 \
--num-gpus=0,0,5,6,50 \
--num-drivers=100 \
--test-script=/ray/test/jenkins_tests/multi_node_tests/many_drivers_test.py
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=1 \
--mem-size=60G \
--shm-size=60G \
--test-script=/ray/test/jenkins_tests/multi_node_tests/large_memory_test.py