ray/doc/source/ray-overview/doc_test/ray_tune.py
Kai Fricke 8fe439998e
[air/tuner/docs] Update docs for Tuner() API 1: RSTs, docs, move reuse_actors (#26930)
Signed-off-by: Kai Fricke coding@kaifricke.com

Why are these changes needed?
Splitting up #26884: This PR includes changes to use Tuner() instead of tune.run() for most docs files (rst and py), and a change to move reuse_actors to the TuneConfig
2022-07-24 07:45:24 -07:00

32 lines
898 B
Python

from ray import tune
from ray.air import session
def objective(step, alpha, beta):
return (0.1 + alpha * step / 100) ** (-1) + beta * 0.1
def training_function(config):
# Hyperparameters
alpha, beta = config["alpha"], config["beta"]
for step in range(10):
# Iterative training function - can be any arbitrary training procedure.
intermediate_score = objective(step, alpha, beta)
# Feed the score back back to Tune.
session.report({"mean_loss": intermediate_score})
tuner = tune.Tuner(
training_function,
param_space={
"alpha": tune.grid_search([0.001, 0.01, 0.1]),
"beta": tune.choice([1, 2, 3]),
},
)
results = tuner.fit()
best_result = results.get_best_result(metric="mean_loss", mode="min")
print("Best result: ", best_result.metrics)
# Get a dataframe for analyzing trial results.
df = results.get_dataframe()