ray/doc/source/serve/doc_code/tutorial_sklearn.py

78 lines
2.1 KiB
Python

# fmt: off
# __doc_import_begin__
from ray import serve
import pickle
import json
import numpy as np
import os
import tempfile
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import mean_squared_error
# __doc_import_end__
# fmt: on
# __doc_instantiate_model_begin__
model = GradientBoostingClassifier()
# __doc_instantiate_model_end__
# __doc_data_begin__
iris_dataset = load_iris()
data, target, target_names = (
iris_dataset["data"],
iris_dataset["target"],
iris_dataset["target_names"],
)
np.random.shuffle(data), np.random.shuffle(target)
train_x, train_y = data[:100], target[:100]
val_x, val_y = data[100:], target[100:]
# __doc_data_end__
# __doc_train_model_begin__
model.fit(train_x, train_y)
print("MSE:", mean_squared_error(model.predict(val_x), val_y))
# Save the model and label to file
MODEL_PATH = os.path.join(
tempfile.gettempdir(), "iris_model_gradient_boosting_classifier.pkl"
)
LABEL_PATH = os.path.join(tempfile.gettempdir(), "iris_labels.json")
with open(MODEL_PATH, "wb") as f:
pickle.dump(model, f)
with open(LABEL_PATH, "w") as f:
json.dump(target_names.tolist(), f)
# __doc_train_model_end__
# __doc_define_servable_begin__
@serve.deployment(route_prefix="/classifier")
class BoostingModel:
def __init__(self, model_path, label_path):
with open(model_path, "rb") as f:
self.model = pickle.load(f)
with open(label_path) as f:
self.label_list = json.load(f)
async def __call__(self, starlette_request):
payload = await starlette_request.json()
print("Worker: received starlette request with data", payload)
input_vector = [
payload["sepal length"],
payload["sepal width"],
payload["petal length"],
payload["petal width"],
]
prediction = self.model.predict([input_vector])[0]
human_name = self.label_list[prediction]
return {"result": human_name}
# __doc_define_servable_end__
# __doc_deploy_begin__
app = BoostingModel.bind(MODEL_PATH, LABEL_PATH)
# __doc_deploy_end__