ray/doc/source/tune/api_docs/reporters.rst
Richard Liaw e311013afd
[tune] Reformat Sections of API Reference (#7706)
* moveit

* moveit

* docstrings to ref

* Update tune-usage.rst

Co-authored-by: Sven Mika <sven@anyscale.io>
2020-03-23 12:23:21 -07:00

92 lines
3.8 KiB
ReStructuredText

Console Output (Reporters)
==========================
By default, Tune reports experiment progress periodically to the command-line as follows.
.. code-block:: bash
== Status ==
Memory usage on this node: 11.4/16.0 GiB
Using FIFO scheduling algorithm.
Resources requested: 4/12 CPUs, 0/0 GPUs, 0.0/3.17 GiB heap, 0.0/1.07 GiB objects
Result logdir: /Users/foo/ray_results/myexp
Number of trials: 4 (4 RUNNING)
+----------------------+----------+---------------------+-----------+--------+--------+--------+--------+------------------+-------+
| Trial name | status | loc | param1 | param2 | param3 | acc | loss | total time (s) | iter |
|----------------------+----------+---------------------+-----------+--------+--------+--------+--------+------------------+-------|
| MyTrainable_a826033a | RUNNING | 10.234.98.164:31115 | 0.303706 | 0.0761 | 0.4328 | 0.1289 | 1.8572 | 7.54952 | 15 |
| MyTrainable_a8263fc6 | RUNNING | 10.234.98.164:31117 | 0.929276 | 0.158 | 0.3417 | 0.4865 | 1.6307 | 7.0501 | 14 |
| MyTrainable_a8267914 | RUNNING | 10.234.98.164:31111 | 0.068426 | 0.0319 | 0.1147 | 0.9585 | 1.9603 | 7.0477 | 14 |
| MyTrainable_a826b7bc | RUNNING | 10.234.98.164:31112 | 0.729127 | 0.0748 | 0.1784 | 0.1797 | 1.7161 | 7.05715 | 14 |
+----------------------+----------+---------------------+-----------+--------+--------+--------+--------+------------------+-------+
Note that columns will be hidden if they are completely empty. The output can be configured in various ways by instantiating a ``CLIReporter`` instance (or ``JupyterNotebookReporter`` if you're using jupyter notebook). Here's an example:
.. code-block:: python
from ray.tune import CLIReporter
# Limit the number of rows.
reporter = CLIReporter(max_progress_rows=10)
# Add a custom metric column, in addition to the default metrics.
# Note that this must be a metric that is returned in your training results.
reporter.add_metric_column("custom_metric")
tune.run(my_trainable, progress_reporter=reporter)
Extending ``CLIReporter`` lets you control reporting frequency. For example:
.. code-block:: python
class ExperimentTerminationReporter(CLIReporter):
def should_report(self, trials, done=False):
"""Reports only on experiment termination."""
return done
tune.run(my_trainable, progress_reporter=ExperimentTerminationReporter())
class TrialTerminationReporter(CLIReporter):
def __init__(self):
self.num_terminated = 0
def should_report(self, trials, done=False):
"""Reports only on trial termination events."""
old_num_terminated = self.num_terminated
self.num_terminated = len([t for t in trials if t.status == Trial.TERMINATED])
return self.num_terminated > old_num_terminated
tune.run(my_trainable, progress_reporter=TrialTerminationReporter())
The default reporting style can also be overriden more broadly by extending the ``ProgressReporter`` interface directly. Note that you can print to any output stream, file etc.
.. code-block:: python
from ray.tune import ProgressReporter
class CustomReporter(ProgressReporter):
def should_report(self, trials, done=False):
return True
def report(self, trials, *sys_info):
print(*sys_info)
print("\n".join([str(trial) for trial in trials]))
tune.run(my_trainable, progress_reporter=CustomReporter())
ProgressReporter
----------------
.. autoclass:: ray.tune.ProgressReporter
:members:
CLIReporter
-----------
.. autoclass:: ray.tune.CLIReporter
JupyterNotebookReporter
-----------------------
.. autoclass:: ray.tune.JupyterNotebookReporter