ray/release/long_running_tests/workloads/many_tasks.py
2020-10-22 17:04:41 -07:00

66 lines
1.8 KiB
Python

# This workload tests submitting and getting many tasks over and over.
import time
import numpy as np
import ray
from ray.cluster_utils import Cluster
num_redis_shards = 5
redis_max_memory = 10**8
object_store_memory = 10**8
num_nodes = 10
message = ("Make sure there is enough memory on this machine to run this "
"workload. We divide the system memory by 2 to provide a buffer.")
assert (num_nodes * object_store_memory + num_redis_shards * redis_max_memory <
ray.utils.get_system_memory() / 2), message
# Simulate a cluster on one machine.
cluster = Cluster()
for i in range(num_nodes):
cluster.add_node(
redis_port=6379 if i == 0 else None,
num_redis_shards=num_redis_shards if i == 0 else None,
num_cpus=2,
num_gpus=0,
resources={str(i): 2},
object_store_memory=object_store_memory,
redis_max_memory=redis_max_memory,
dashboard_host="0.0.0.0")
ray.init(address=cluster.address)
# Run the workload.
@ray.remote
def f(*xs):
return np.zeros(1024, dtype=np.uint8)
iteration = 0
ids = []
start_time = time.time()
previous_time = start_time
while True:
for _ in range(50):
new_constrained_ids = [
f._remote(args=[*ids], resources={str(i % num_nodes): 1})
for i in range(25)
]
new_unconstrained_ids = [f.remote(*ids) for _ in range(25)]
ids = new_constrained_ids + new_unconstrained_ids
ray.get(ids)
new_time = time.time()
print("Iteration {}:\n"
" - Iteration time: {}.\n"
" - Absolute time: {}.\n"
" - Total elapsed time: {}.".format(
iteration, new_time - previous_time, new_time,
new_time - start_time))
previous_time = new_time
iteration += 1