ray/rllib/env/remote_base_env.py

285 lines
11 KiB
Python

import logging
from typing import Callable, Dict, List, Optional, Tuple
import gym
import ray
from ray.rllib.env.base_env import BaseEnv, _DUMMY_AGENT_ID, ASYNC_RESET_RETURN
from ray.rllib.utils.annotations import override, PublicAPI
from ray.rllib.utils.typing import MultiEnvDict, EnvType, EnvID
logger = logging.getLogger(__name__)
@PublicAPI
class RemoteBaseEnv(BaseEnv):
"""BaseEnv that executes its sub environments as @ray.remote actors.
This provides dynamic batching of inference as observations are returned
from the remote simulator actors. Both single and multi-agent child envs
are supported, and envs can be stepped synchronously or asynchronously.
NOTE: This class implicitly assumes that the remote envs are gym.Env's
You shouldn't need to instantiate this class directly. It's automatically
inserted when you use the `remote_worker_envs=True` option in your
Trainer's config.
"""
def __init__(self,
make_env: Callable[[int], EnvType],
num_envs: int,
multiagent: bool,
remote_env_batch_wait_ms: int,
existing_envs: Optional[List[ray.actor.ActorHandle]] = None):
"""Initializes a RemoteVectorEnv instance.
Args:
make_env: Callable that produces a single (non-vectorized) env,
given the vector env index as only arg.
num_envs: The number of sub-environments to create for the
vectorization.
multiagent: Whether this is a multiagent env or not.
remote_env_batch_wait_ms: Time to wait for (ray.remote)
sub-environments to have new observations available when
polled. Only when none of the sub-environments is ready,
repeat the `ray.wait()` call until at least one sub-env
is ready. Then return only the observations of the ready
sub-environment(s).
existing_envs: Optional list of already created sub-environments.
These will be used as-is and only as many new sub-envs as
necessary (`num_envs - len(existing_envs)`) will be created.
"""
# Could be creating local or remote envs.
self.make_env = make_env
# Whether the given `make_env` callable already returns ray.remote
# objects or not.
self.make_env_creates_actors = False
# Already existing env objects (generated by the RolloutWorker).
self.existing_envs = existing_envs or []
self.num_envs = num_envs
self.multiagent = multiagent
self.poll_timeout = remote_env_batch_wait_ms / 1000
# List of ray actor handles (each handle points to one @ray.remote
# sub-environment).
self.actors: Optional[List[ray.actor.ActorHandle]] = None
self._observation_space = None
self._action_space = None
# Dict mapping object refs (return values of @ray.remote calls),
# whose actual values we are waiting for (via ray.wait in
# `self.poll()`) to their corresponding actor handles (the actors
# that created these return values).
self.pending: Optional[Dict[ray.actor.ActorHandle]] = None
@override(BaseEnv)
def poll(self) -> Tuple[MultiEnvDict, MultiEnvDict, MultiEnvDict,
MultiEnvDict, MultiEnvDict]:
if self.actors is None:
# `self.make_env` already produces Actors: Use it directly.
if len(self.existing_envs) > 0 and isinstance(
self.existing_envs[0], ray.actor.ActorHandle):
self.make_env_creates_actors = True
self.actors = []
while len(self.actors) < self.num_envs:
self.actors.append(self.make_env(len(self.actors)))
# `self.make_env` produces gym.Envs (or children thereof, such
# as MultiAgentEnv): Need to auto-wrap it here. The problem with
# this is that custom methods wil get lost. If you would like to
# keep your custom methods in your envs, you should provide the
# env class directly in your config (w/o tune.register_env()),
# such that your class will directly be made a @ray.remote
# (w/o the wrapping via `_Remote[Multi|Single]AgentEnv`).
else:
def make_remote_env(i):
logger.info("Launching env {} in remote actor".format(i))
if self.multiagent:
return _RemoteMultiAgentEnv.remote(self.make_env, i)
else:
return _RemoteSingleAgentEnv.remote(self.make_env, i)
self.actors = [
make_remote_env(i) for i in range(self.num_envs)
]
self._observation_space = ray.get(
self.actors[0].observation_space.remote())
self._action_space = ray.get(
self.actors[0].action_space.remote())
# Lazy initialization. Call `reset()` on all @ray.remote
# sub-environment actors at the beginning.
if self.pending is None:
# Initialize our pending object ref -> actor handle mapping
# dict.
self.pending = {a.reset.remote(): a for a in self.actors}
# each keyed by env_id in [0, num_remote_envs)
obs, rewards, dones, infos = {}, {}, {}, {}
ready = []
# Wait for at least 1 env to be ready here.
while not ready:
ready, _ = ray.wait(
list(self.pending),
num_returns=len(self.pending),
timeout=self.poll_timeout)
# Get and return observations for each of the ready envs
env_ids = set()
for obj_ref in ready:
# Get the corresponding actor handle from our dict and remove the
# object ref (we will call `ray.get()` on it and it will no longer
# be "pending").
actor = self.pending.pop(obj_ref)
env_id = self.actors.index(actor)
env_ids.add(env_id)
# Get the ready object ref (this may be return value(s) of
# `reset()` or `step()`).
ret = ray.get(obj_ref)
# Our sub-envs are simple Actor-turned gym.Envs or MultiAgentEnvs.
if self.make_env_creates_actors:
rew, done, info = None, None, None
if self.multiagent:
if isinstance(ret, tuple) and len(ret) == 4:
ob, rew, done, info = ret
else:
ob = ret
else:
if isinstance(ret, tuple) and len(ret) == 4:
ob = {_DUMMY_AGENT_ID: ret[0]}
rew = {_DUMMY_AGENT_ID: ret[1]}
done = {_DUMMY_AGENT_ID: ret[2], "__all__": ret[2]}
info = {_DUMMY_AGENT_ID: ret[3]}
else:
ob = {_DUMMY_AGENT_ID: ret}
# If this is a `reset()` return value, we only have the initial
# observations: Set rewards, dones, and infos to dummy values.
if rew is None:
rew = {agent_id: 0 for agent_id in ob.keys()}
done = {"__all__": False}
info = {agent_id: {} for agent_id in ob.keys()}
# Our sub-envs are auto-wrapped (by `_RemoteSingleAgentEnv` or
# `_RemoteMultiAgentEnv`) and already behave like multi-agent
# envs.
else:
ob, rew, done, info = ret
obs[env_id] = ob
rewards[env_id] = rew
dones[env_id] = done
infos[env_id] = info
logger.debug("Got obs batch for actors {}".format(env_ids))
return obs, rewards, dones, infos, {}
@override(BaseEnv)
@PublicAPI
def send_actions(self, action_dict: MultiEnvDict) -> None:
for env_id, actions in action_dict.items():
actor = self.actors[env_id]
# `actor` is a simple single-agent (remote) env, e.g. a gym.Env
# that was made a @ray.remote.
if not self.multiagent and self.make_env_creates_actors:
obj_ref = actor.step.remote(actions[_DUMMY_AGENT_ID])
# `actor` is already a _RemoteSingleAgentEnv or
# _RemoteMultiAgentEnv wrapper
# (handles the multi-agent action_dict automatically).
else:
obj_ref = actor.step.remote(actions)
self.pending[obj_ref] = actor
@override(BaseEnv)
@PublicAPI
def try_reset(self,
env_id: Optional[EnvID] = None) -> Optional[MultiEnvDict]:
actor = self.actors[env_id]
obj_ref = actor.reset.remote()
self.pending[obj_ref] = actor
return ASYNC_RESET_RETURN
@override(BaseEnv)
@PublicAPI
def stop(self) -> None:
if self.actors is not None:
for actor in self.actors:
actor.__ray_terminate__.remote()
@override(BaseEnv)
@PublicAPI
def get_sub_environments(self, as_dict: bool = False) -> List[EnvType]:
if as_dict:
return {env_id: actor for env_id, actor in enumerate(self.actors)}
return self.actors
@property
@override(BaseEnv)
@PublicAPI
def observation_space(self) -> gym.spaces.Dict:
return self._observation_space
@property
@override(BaseEnv)
@PublicAPI
def action_space(self) -> gym.Space:
return self._action_space
@ray.remote(num_cpus=0)
class _RemoteMultiAgentEnv:
"""Wrapper class for making a multi-agent env a remote actor."""
def __init__(self, make_env, i):
self.env = make_env(i)
def reset(self):
obs = self.env.reset()
# each keyed by agent_id in the env
rew = {agent_id: 0 for agent_id in obs.keys()}
info = {agent_id: {} for agent_id in obs.keys()}
done = {"__all__": False}
return obs, rew, done, info
def step(self, action_dict):
return self.env.step(action_dict)
# defining these 2 functions that way this information can be queried
# with a call to ray.get()
def observation_space(self):
return self.env.observation_space
def action_space(self):
return self.env.action_space
@ray.remote(num_cpus=0)
class _RemoteSingleAgentEnv:
"""Wrapper class for making a gym env a remote actor."""
def __init__(self, make_env, i):
self.env = make_env(i)
def reset(self):
obs = {_DUMMY_AGENT_ID: self.env.reset()}
rew = {agent_id: 0 for agent_id in obs.keys()}
done = {"__all__": False}
info = {agent_id: {} for agent_id in obs.keys()}
return obs, rew, done, info
def step(self, action):
obs, rew, done, info = self.env.step(action[_DUMMY_AGENT_ID])
obs, rew, done, info = [{
_DUMMY_AGENT_ID: x
} for x in [obs, rew, done, info]]
done["__all__"] = done[_DUMMY_AGENT_ID]
return obs, rew, done, info
# defining these 2 functions that way this information can be queried
# with a call to ray.get()
def observation_space(self):
return self.env.observation_space
def action_space(self):
return self.env.action_space