ray/rllib/agents/es/utils.py

63 lines
1.7 KiB
Python

# Code in this file is copied and adapted from
# https://github.com/openai/evolution-strategies-starter.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from ray.rllib.utils import try_import_tf
tf = try_import_tf()
def compute_ranks(x):
"""Returns ranks in [0, len(x))
Note: This is different from scipy.stats.rankdata, which returns ranks in
[1, len(x)].
"""
assert x.ndim == 1
ranks = np.empty(len(x), dtype=int)
ranks[x.argsort()] = np.arange(len(x))
return ranks
def compute_centered_ranks(x):
y = compute_ranks(x.ravel()).reshape(x.shape).astype(np.float32)
y /= (x.size - 1)
y -= 0.5
return y
def make_session(single_threaded):
if not single_threaded:
return tf.Session()
return tf.Session(
config=tf.ConfigProto(
inter_op_parallelism_threads=1, intra_op_parallelism_threads=1))
def itergroups(items, group_size):
assert group_size >= 1
group = []
for x in items:
group.append(x)
if len(group) == group_size:
yield tuple(group)
del group[:]
if group:
yield tuple(group)
def batched_weighted_sum(weights, vecs, batch_size):
total = 0
num_items_summed = 0
for batch_weights, batch_vecs in zip(
itergroups(weights, batch_size), itergroups(vecs, batch_size)):
assert len(batch_weights) == len(batch_vecs) <= batch_size
total += np.dot(
np.asarray(batch_weights, dtype=np.float32),
np.asarray(batch_vecs, dtype=np.float32))
num_items_summed += len(batch_weights)
return total, num_items_summed