ray/rllib/algorithms/maml/maml.py

387 lines
14 KiB
Python

import logging
import numpy as np
from typing import Optional, Type
from ray.rllib.algorithms.algorithm import Algorithm
from ray.rllib.algorithms.algorithm_config import AlgorithmConfig
from ray.rllib.evaluation.metrics import get_learner_stats
from ray.rllib.evaluation.worker_set import WorkerSet
from ray.rllib.execution.common import (
STEPS_SAMPLED_COUNTER,
STEPS_TRAINED_COUNTER,
STEPS_TRAINED_THIS_ITER_COUNTER,
_get_shared_metrics,
)
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.execution.metric_ops import CollectMetrics
from ray.rllib.evaluation.metrics import collect_metrics
from ray.rllib.utils.annotations import override
from ray.rllib.utils.deprecation import Deprecated, DEPRECATED_VALUE
from ray.rllib.utils.metrics.learner_info import LEARNER_INFO
from ray.rllib.utils.sgd import standardized
from ray.rllib.utils.typing import AlgorithmConfigDict
from ray.util.iter import from_actors, LocalIterator
logger = logging.getLogger(__name__)
class MAMLConfig(AlgorithmConfig):
"""Defines a configuration class from which a MAML Algorithm can be built.
Example:
>>> from ray.rllib.algorithms.maml import MAMLConfig
>>> config = MAMLConfig().training(use_gae=False).resources(num_gpus=1)
>>> print(config.to_dict())
>>> # Build a Algorithm object from the config and run 1 training iteration.
>>> trainer = config.build(env="CartPole-v1")
>>> trainer.train()
Example:
>>> from ray.rllib.algorithms.maml import MAMLConfig
>>> from ray import tune
>>> config = MAMLConfig()
>>> # Print out some default values.
>>> print(config.lr)
>>> # Update the config object.
>>> config.training(grad_clip=tune.grid_search([10.0, 40.0]))
>>> # Set the config object's env.
>>> config.environment(env="CartPole-v1")
>>> # Use to_dict() to get the old-style python config dict
>>> # when running with tune.
>>> tune.run(
... "MAML",
... stop={"episode_reward_mean": 200},
... config=config.to_dict(),
... )
"""
def __init__(self, algo_class=None):
"""Initializes a PGConfig instance."""
super().__init__(algo_class=algo_class or MAML)
# fmt: off
# __sphinx_doc_begin__
# MAML-specific config settings.
self.use_gae = True
self.lambda_ = 1.0
self.kl_coeff = 0.0005
self.vf_loss_coeff = 0.5
self.entropy_coeff = 0.0
self.clip_param = 0.3
self.vf_clip_param = 10.0
self.grad_clip = None
self.kl_target = 0.01
self.inner_adaptation_steps = 1
self.maml_optimizer_steps = 5
self.inner_lr = 0.1
self.use_meta_env = True
# Override some of AlgorithmConfig's default values with MAML-specific values.
self.rollout_fragment_length = 200
self.create_env_on_local_worker = True
self.lr = 1e-3
# Share layers for value function.
self.model.update({
"vf_share_layers": False,
})
self.batch_mode = "complete_episodes"
self._disable_execution_plan_api = False
# __sphinx_doc_end__
# fmt: on
# Deprecated keys:
self.vf_share_layers = DEPRECATED_VALUE
def training(
self,
*,
use_gae: Optional[bool] = None,
lambda_: Optional[float] = None,
kl_coeff: Optional[float] = None,
vf_loss_coeff: Optional[float] = None,
entropy_coeff: Optional[float] = None,
clip_param: Optional[float] = None,
vf_clip_param: Optional[float] = None,
grad_clip: Optional[float] = None,
kl_target: Optional[float] = None,
inner_adaptation_steps: Optional[int] = None,
maml_optimizer_steps: Optional[int] = None,
inner_lr: Optional[float] = None,
use_meta_env: Optional[bool] = None,
**kwargs,
) -> "MAMLConfig":
"""Sets the training related configuration.
Args:
use_gae: If true, use the Generalized Advantage Estimator (GAE)
with a value function, see https://arxiv.org/pdf/1506.02438.pdf.
lambda_: The GAE (lambda) parameter.
kl_coeff: Initial coefficient for KL divergence.
vf_loss_coeff: Coefficient of the value function loss.
entropy_coeff: Coefficient of the entropy regularizer.
clip_param: PPO clip parameter.
vf_clip_param: Clip param for the value function. Note that this is
sensitive to the scale of the rewards. If your expected V is large,
increase this.
grad_clip: If specified, clip the global norm of gradients by this amount.
kl_target: Target value for KL divergence.
inner_adaptation_steps: Number of Inner adaptation steps for the MAML
algorithm.
maml_optimizer_steps: Number of MAML steps per meta-update iteration
(PPO steps).
inner_lr: Inner Adaptation Step size.
use_meta_env: Use Meta Env Template.
Returns:
This updated AlgorithmConfig object.
"""
# Pass kwargs onto super's `training()` method.
super().training(**kwargs)
if use_gae is not None:
self.use_gae = use_gae
if lambda_ is not None:
self.lambda_ = lambda_
if kl_coeff is not None:
self.kl_coeff = kl_coeff
if vf_loss_coeff is not None:
self.vf_loss_coeff = vf_loss_coeff
if entropy_coeff is not None:
self.entropy_coeff = entropy_coeff
if clip_param is not None:
self.clip_param = clip_param
if vf_clip_param is not None:
self.vf_clip_param = vf_clip_param
if grad_clip is not None:
self.grad_clip = grad_clip
if kl_target is not None:
self.kl_target = kl_target
if inner_adaptation_steps is not None:
self.inner_adaptation_steps = inner_adaptation_steps
if maml_optimizer_steps is not None:
self.maml_optimizer_steps = maml_optimizer_steps
if inner_lr is not None:
self.inner_lr = inner_lr
if use_meta_env is not None:
self.use_meta_env = use_meta_env
return self
# @mluo: TODO
def set_worker_tasks(workers, use_meta_env):
if use_meta_env:
n_tasks = len(workers.remote_workers())
tasks = workers.local_worker().foreach_env(lambda x: x)[0].sample_tasks(n_tasks)
for i, worker in enumerate(workers.remote_workers()):
worker.foreach_env.remote(lambda env: env.set_task(tasks[i]))
class MetaUpdate:
def __init__(self, workers, maml_steps, metric_gen, use_meta_env):
self.workers = workers
self.maml_optimizer_steps = maml_steps
self.metric_gen = metric_gen
self.use_meta_env = use_meta_env
def __call__(self, data_tuple):
# Metaupdate Step
samples = data_tuple[0]
adapt_metrics_dict = data_tuple[1]
# Metric Updating
metrics = _get_shared_metrics()
metrics.counters[STEPS_SAMPLED_COUNTER] += samples.count
fetches = None
for i in range(self.maml_optimizer_steps):
fetches = self.workers.local_worker().learn_on_batch(samples)
learner_stats = get_learner_stats(fetches)
# Sync workers with meta policy
self.workers.sync_weights()
# Set worker tasks
set_worker_tasks(self.workers, self.use_meta_env)
# Update KLS
def update(pi, pi_id):
assert "inner_kl" not in learner_stats, (
"inner_kl should be nested under policy id key",
learner_stats,
)
if pi_id in learner_stats:
assert "inner_kl" in learner_stats[pi_id], (learner_stats, pi_id)
pi.update_kls(learner_stats[pi_id]["inner_kl"])
else:
logger.warning("No data for {}, not updating kl".format(pi_id))
self.workers.local_worker().foreach_policy_to_train(update)
# Modify Reporting Metrics
metrics = _get_shared_metrics()
metrics.info[LEARNER_INFO] = fetches
metrics.counters[STEPS_TRAINED_THIS_ITER_COUNTER] = samples.count
metrics.counters[STEPS_TRAINED_COUNTER] += samples.count
res = self.metric_gen.__call__(None)
res.update(adapt_metrics_dict)
return res
def post_process_metrics(adapt_iter, workers, metrics):
# Obtain Current Dataset Metrics and filter out
name = "_adapt_" + str(adapt_iter) if adapt_iter > 0 else ""
# Only workers are collecting data
res = collect_metrics(remote_workers=workers.remote_workers())
metrics["episode_reward_max" + str(name)] = res["episode_reward_max"]
metrics["episode_reward_mean" + str(name)] = res["episode_reward_mean"]
metrics["episode_reward_min" + str(name)] = res["episode_reward_min"]
return metrics
def inner_adaptation(workers, samples):
# Each worker performs one gradient descent
for i, e in enumerate(workers.remote_workers()):
e.learn_on_batch.remote(samples[i])
class MAML(Algorithm):
@classmethod
@override(Algorithm)
def get_default_config(cls) -> AlgorithmConfigDict:
return MAMLConfig().to_dict()
@override(Algorithm)
def validate_config(self, config: AlgorithmConfigDict) -> None:
# Call super's validation method.
super().validate_config(config)
if config["num_gpus"] > 1:
raise ValueError("`num_gpus` > 1 not yet supported for MAML!")
if config["inner_adaptation_steps"] <= 0:
raise ValueError("Inner Adaptation Steps must be >=1!")
if config["maml_optimizer_steps"] <= 0:
raise ValueError("PPO steps for meta-update needs to be >=0!")
if config["entropy_coeff"] < 0:
raise ValueError("`entropy_coeff` must be >=0.0!")
if config["batch_mode"] != "complete_episodes":
raise ValueError("`batch_mode`=truncate_episodes not supported!")
if config["num_workers"] <= 0:
raise ValueError("Must have at least 1 worker/task!")
if config["create_env_on_driver"] is False:
raise ValueError(
"Must have an actual Env created on the driver "
"(local) worker! Set `create_env_on_driver` to True."
)
@override(Algorithm)
def get_default_policy_class(self, config: AlgorithmConfigDict) -> Type[Policy]:
if config["framework"] == "torch":
from ray.rllib.algorithms.maml.maml_torch_policy import MAMLTorchPolicy
return MAMLTorchPolicy
elif config["framework"] == "tf":
from ray.rllib.algorithms.maml.maml_tf_policy import MAMLTF1Policy
return MAMLTF1Policy
else:
from ray.rllib.algorithms.maml.maml_tf_policy import MAMLTF2Policy
return MAMLTF2Policy
@staticmethod
@override(Algorithm)
def execution_plan(
workers: WorkerSet, config: AlgorithmConfigDict, **kwargs
) -> LocalIterator[dict]:
assert (
len(kwargs) == 0
), "MAML execution_plan does NOT take any additional parameters"
# Sync workers with meta policy
workers.sync_weights()
# Samples and sets worker tasks
use_meta_env = config["use_meta_env"]
set_worker_tasks(workers, use_meta_env)
# Metric Collector
metric_collect = CollectMetrics(
workers,
min_history=config["metrics_num_episodes_for_smoothing"],
timeout_seconds=config["metrics_episode_collection_timeout_s"],
)
# Iterator for Inner Adaptation Data gathering (from pre->post
# adaptation)
inner_steps = config["inner_adaptation_steps"]
def inner_adaptation_steps(itr):
buf = []
split = []
metrics = {}
for samples in itr:
# Processing Samples (Standardize Advantages)
split_lst = []
for sample in samples:
sample["advantages"] = standardized(sample["advantages"])
split_lst.append(sample.count)
buf.extend(samples)
split.append(split_lst)
adapt_iter = len(split) - 1
metrics = post_process_metrics(adapt_iter, workers, metrics)
if len(split) > inner_steps:
out = SampleBatch.concat_samples(buf)
out["split"] = np.array(split)
buf = []
split = []
# Reporting Adaptation Rew Diff
ep_rew_pre = metrics["episode_reward_mean"]
ep_rew_post = metrics[
"episode_reward_mean_adapt_" + str(inner_steps)
]
metrics["adaptation_delta"] = ep_rew_post - ep_rew_pre
yield out, metrics
metrics = {}
else:
inner_adaptation(workers, samples)
rollouts = from_actors(workers.remote_workers())
rollouts = rollouts.batch_across_shards()
rollouts = rollouts.transform(inner_adaptation_steps)
# Metaupdate Step
train_op = rollouts.for_each(
MetaUpdate(
workers, config["maml_optimizer_steps"], metric_collect, use_meta_env
)
)
return train_op
# Deprecated: Use ray.rllib.algorithms.qmix.qmix.QMixConfig instead!
class _deprecated_default_config(dict):
def __init__(self):
super().__init__(MAMLConfig().to_dict())
@Deprecated(
old="ray.rllib.algorithms.maml.maml.DEFAULT_CONFIG",
new="ray.rllib.algorithms.maml.maml.MAMLConfig(...)",
error=False,
)
def __getitem__(self, item):
return super().__getitem__(item)
DEFAULT_CONFIG = _deprecated_default_config()