ray/rllib/agents/cql
Julius Frost a88b217d3f
[rllib] Enhancements to Input API for customizing offline datasets (#16957)
Co-authored-by: Richard Liaw <rliaw@berkeley.edu>
2021-07-10 15:05:25 -07:00
..
tests [RLlib] CQL BC loss fixes; PPO/PG/A2|3C action normalization fixes (#16531) 2021-06-30 12:32:11 +02:00
__init__.py [RLlib] New Offline RL Algorithm: CQL (based on SAC) (#13118) 2020-12-30 10:11:57 -05:00
cql.py [rllib] Enhancements to Input API for customizing offline datasets (#16957) 2021-07-10 15:05:25 -07:00
cql_tf_policy.py [RLlib] CQL BC loss fixes; PPO/PG/A2|3C action normalization fixes (#16531) 2021-06-30 12:32:11 +02:00
cql_torch_policy.py [RLlib] CQL BC loss fixes; PPO/PG/A2|3C action normalization fixes (#16531) 2021-06-30 12:32:11 +02:00
README.md [RLlib] CQL Documentation + Tests (#14531) 2021-03-11 18:51:39 +01:00

Conservative Q-Learning (CQL)

Overview

CQL is an offline RL algorithm that mitigates the overestimation of Q-values outside the dataset distribution via convservative critic estimates. CQL does this by adding a simple Q regularizer loss to the standard Belman update loss. This ensures that the critic does not output overly-optimistic Q-values and can be added on top of any off-policy Q-learning algorithm (in this case, we use SAC).

Documentation & Implementation:

Conservative Q-Learning (CQL).

Detailed Documentation

Implementation