ray/rllib/examples/env/pendulum_mass.py

32 lines
961 B
Python

import numpy as np
import gym
from gym.envs.classic_control.pendulum import PendulumEnv
from ray.rllib.env.meta_env import MetaEnv
class PendulumMassEnv(PendulumEnv, gym.utils.EzPickle, MetaEnv):
"""PendulumMassEnv varies the weight of the pendulum
Tasks are defined to be weight uniformly sampled between [0.5,2]
"""
def sample_tasks(self, n_tasks):
# Sample new pendulum masses (random floats between 0.5 and 2).
return np.random.uniform(low=0.5, high=2.0, size=(n_tasks, ))
def set_task(self, task):
"""
Args:
task (float): Task of the meta-learning environment (here: mass of
the pendulum).
"""
# self.m is the mass property of the pendulum.
self.m = task
def get_task(self):
"""
Returns:
float: The current mass of the pendulum (self.m in the PendulumEnv
object).
"""
return self.m