mirror of
https://github.com/vale981/ray
synced 2025-03-05 10:01:43 -05:00
No description
![]() * Remove unneeded code for Windows * Get rid of usleep() * Make platform_shims includes non-transitive Co-authored-by: Mehrdad <noreply@github.com> |
||
---|---|---|
.github | ||
bazel | ||
ci | ||
cpp | ||
deploy/ray-operator | ||
doc | ||
docker | ||
java | ||
python | ||
rllib | ||
src | ||
streaming | ||
thirdparty | ||
.bazelrc | ||
.clang-format | ||
.editorconfig | ||
.gitignore | ||
.style.yapf | ||
.travis.yml | ||
build-docker.sh | ||
BUILD.bazel | ||
build.sh | ||
CONTRIBUTING.rst | ||
LICENSE | ||
pylintrc | ||
README.rst | ||
scripts | ||
setup_hooks.sh | ||
WORKSPACE |
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png .. image:: https://travis-ci.com/ray-project/ray.svg?branch=master :target: https://travis-ci.com/ray-project/ray .. image:: https://readthedocs.org/projects/ray/badge/?version=latest :target: http://docs.ray.io/en/latest/?badge=latest | **Ray is a fast and simple framework for building and running distributed applications.** Ray is packaged with the following libraries for accelerating machine learning workloads: - `Tune`_: Scalable Hyperparameter Tuning - `RLlib`_: Scalable Reinforcement Learning - `RaySGD <https://docs.ray.io/en/latest/raysgd/raysgd.html>`__: Distributed Training Wrappers Install Ray with: ``pip install ray``. For nightly wheels, see the `Installation page <https://docs.ray.io/en/latest/installation.html>`__. **NOTE:** As of Ray 0.8.1, Python 2 is no longer supported. Quick Start ----------- Execute Python functions in parallel. .. code-block:: python import ray ray.init() @ray.remote def f(x): return x * x futures = [f.remote(i) for i in range(4)] print(ray.get(futures)) To use Ray's actor model: .. code-block:: python import ray ray.init() @ray.remote class Counter(object): def __init__(self): self.n = 0 def increment(self): self.n += 1 def read(self): return self.n counters = [Counter.remote() for i in range(4)] [c.increment.remote() for c in counters] futures = [c.read.remote() for c in counters] print(ray.get(futures)) Ray programs can run on a single machine, and can also seamlessly scale to large clusters. To execute the above Ray script in the cloud, just download `this configuration file <https://github.com/ray-project/ray/blob/master/python/ray/autoscaler/aws/example-full.yaml>`__, and run: ``ray submit [CLUSTER.YAML] example.py --start`` Read more about `launching clusters <https://docs.ray.io/en/latest/autoscaling.html>`_. Tune Quick Start ---------------- .. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/tune-wide.png `Tune`_ is a library for hyperparameter tuning at any scale. - Launch a multi-node distributed hyperparameter sweep in less than 10 lines of code. - Supports any deep learning framework, including PyTorch, TensorFlow, and Keras. - Visualize results with `TensorBoard <https://www.tensorflow.org/get_started/summaries_and_tensorboard>`__. - Choose among scalable SOTA algorithms such as `Population Based Training (PBT)`_, `Vizier's Median Stopping Rule`_, `HyperBand/ASHA`_. - Tune integrates with many optimization libraries such as `Facebook Ax <http://ax.dev>`_, `HyperOpt <https://github.com/hyperopt/hyperopt>`_, and `Bayesian Optimization <https://github.com/fmfn/BayesianOptimization>`_ and enables you to scale them transparently. To run this example, you will need to install the following: .. code-block:: bash $ pip install ray[tune] This example runs a parallel grid search to optimize an example objective function. .. code-block:: python from ray import tune def objective(step, alpha, beta): return (0.1 + alpha * step / 100)**(-1) + beta * 0.1 def training_function(config): # Hyperparameters alpha, beta = config["alpha"], config["beta"] for step in range(10): # Iterative training function - can be any arbitrary training procedure. intermediate_score = objective(step, alpha, beta) # Feed the score back back to Tune. tune.report(mean_loss=intermediate_score) analysis = tune.run( training_function, config={ "alpha": tune.grid_search([0.001, 0.01, 0.1]), "beta": tune.choice([1, 2, 3]) }) print("Best config: ", analysis.get_best_config(metric="mean_loss")) # Get a dataframe for analyzing trial results. df = analysis.dataframe() If TensorBoard is installed, automatically visualize all trial results: .. code-block:: bash tensorboard --logdir ~/ray_results .. _`Tune`: https://docs.ray.io/en/latest/tune.html .. _`Population Based Training (PBT)`: https://docs.ray.io/en/latest/tune-schedulers.html#population-based-training-pbt .. _`Vizier's Median Stopping Rule`: https://docs.ray.io/en/latest/tune-schedulers.html#median-stopping-rule .. _`HyperBand/ASHA`: https://docs.ray.io/en/latest/tune-schedulers.html#asynchronous-hyperband RLlib Quick Start ----------------- .. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/rllib-wide.jpg `RLlib`_ is an open-source library for reinforcement learning built on top of Ray that offers both high scalability and a unified API for a variety of applications. .. code-block:: bash pip install tensorflow # or tensorflow-gpu pip install ray[rllib] # also recommended: ray[debug] .. code-block:: python import gym from gym.spaces import Discrete, Box from ray import tune class SimpleCorridor(gym.Env): def __init__(self, config): self.end_pos = config["corridor_length"] self.cur_pos = 0 self.action_space = Discrete(2) self.observation_space = Box(0.0, self.end_pos, shape=(1, )) def reset(self): self.cur_pos = 0 return [self.cur_pos] def step(self, action): if action == 0 and self.cur_pos > 0: self.cur_pos -= 1 elif action == 1: self.cur_pos += 1 done = self.cur_pos >= self.end_pos return [self.cur_pos], 1 if done else 0, done, {} tune.run( "PPO", config={ "env": SimpleCorridor, "num_workers": 4, "env_config": {"corridor_length": 5}}) .. _`RLlib`: https://docs.ray.io/en/latest/rllib.html More Information ---------------- - `Documentation`_ - `Tutorial`_ - `Blog`_ - `Ray paper`_ - `Ray HotOS paper`_ - `RLlib paper`_ - `Tune paper`_ .. _`Documentation`: http://docs.ray.io/en/latest/index.html .. _`Tutorial`: https://github.com/ray-project/tutorial .. _`Blog`: https://ray-project.github.io/ .. _`Ray paper`: https://arxiv.org/abs/1712.05889 .. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924 .. _`RLlib paper`: https://arxiv.org/abs/1712.09381 .. _`Tune paper`: https://arxiv.org/abs/1807.05118 Getting Involved ---------------- - `ray-dev@googlegroups.com`_: For discussions about development or any general questions. - `StackOverflow`_: For questions about how to use Ray. - `GitHub Issues`_: For reporting bugs and feature requests. - `Pull Requests`_: For submitting code contributions. - `Meetup Group`_: Join our meetup group. - `Community Slack`_: Join our Slack workspace. - `Twitter`_: Follow updates on Twitter. .. _`ray-dev@googlegroups.com`: https://groups.google.com/forum/#!forum/ray-dev .. _`GitHub Issues`: https://github.com/ray-project/ray/issues .. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray .. _`Pull Requests`: https://github.com/ray-project/ray/pulls .. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/ .. _`Community Slack`: https://forms.gle/9TSdDYUgxYs8SA9e8 .. _`Twitter`: https://twitter.com/raydistributed