ray/rllib/examples/models/rnn_spy_model.py

133 lines
4.5 KiB
Python

import numpy as np
import pickle
import ray
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.tf.misc import normc_initializer
from ray.rllib.models.tf.recurrent_net import RecurrentNetwork
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_tf
tf1, tf, tfv = try_import_tf()
class SpyLayer(tf.keras.layers.Layer):
"""A keras Layer, which intercepts its inputs and stored them as pickled.
"""
output = np.array(0, dtype=np.int64)
def __init__(self, num_outputs, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=num_outputs, kernel_initializer=normc_initializer(0.01))
def call(self, inputs, **kwargs):
"""Does a forward pass through our Dense, but also intercepts inputs.
"""
del kwargs
spy_fn = tf1.py_func(
self.spy,
[
inputs[0], # observations
inputs[2], # seq_lens
inputs[3], # h_in
inputs[4], # c_in
inputs[5], # h_out
inputs[6], # c_out
],
tf.int64, # Must match SpyLayer.output's type.
stateful=True)
# Compute outputs
with tf1.control_dependencies([spy_fn]):
return self.dense(inputs[1])
@staticmethod
def spy(inputs, seq_lens, h_in, c_in, h_out, c_out):
"""The actual spy operation: Store inputs in internal_kv."""
if len(inputs) == 1:
# don't capture inference inputs
return SpyLayer.output
# TF runs this function in an isolated context, so we have to use
# redis to communicate back to our suite
ray.experimental.internal_kv._internal_kv_put(
"rnn_spy_in_{}".format(RNNSpyModel.capture_index),
pickle.dumps({
"sequences": inputs,
"seq_lens": seq_lens,
"state_in": [h_in, c_in],
"state_out": [h_out, c_out]
}),
overwrite=True)
RNNSpyModel.capture_index += 1
return SpyLayer.output
class RNNSpyModel(RecurrentNetwork):
capture_index = 0
cell_size = 3
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
super().__init__(obs_space, action_space, num_outputs, model_config,
name)
self.cell_size = RNNSpyModel.cell_size
# Create a keras LSTM model.
inputs = tf.keras.layers.Input(
shape=(None, ) + obs_space.shape, name="input")
state_in_h = tf.keras.layers.Input(shape=(self.cell_size, ), name="h")
state_in_c = tf.keras.layers.Input(shape=(self.cell_size, ), name="c")
seq_lens = tf.keras.layers.Input(
shape=(), name="seq_lens", dtype=tf.int32)
lstm_out, state_out_h, state_out_c = tf.keras.layers.LSTM(
self.cell_size,
return_sequences=True,
return_state=True,
name="lstm")(
inputs=inputs,
mask=tf.sequence_mask(seq_lens),
initial_state=[state_in_h, state_in_c])
logits = SpyLayer(num_outputs=self.num_outputs)([
inputs, lstm_out, seq_lens, state_in_h, state_in_c, state_out_h,
state_out_c
])
# Value branch.
value_out = tf.keras.layers.Dense(
units=1, kernel_initializer=normc_initializer(1.0))(lstm_out)
self.base_model = tf.keras.Model(
[inputs, seq_lens, state_in_h, state_in_c],
[logits, value_out, state_out_h, state_out_c])
self.base_model.summary()
@override(RecurrentNetwork)
def forward_rnn(self, inputs, state, seq_lens):
# Previously, a new class object was created during
# deserialization and this `capture_index`
# variable would be refreshed between class instantiations.
# This behavior is no longer the case, so we manually refresh
# the variable.
RNNSpyModel.capture_index = 0
model_out, value_out, h, c = self.base_model(
[inputs, seq_lens, state[0], state[1]])
self._value_out = value_out
return model_out, [h, c]
@override(ModelV2)
def value_function(self):
return tf.reshape(self._value_out, [-1])
@override(ModelV2)
def get_initial_state(self):
return [
np.zeros(self.cell_size, np.float32),
np.zeros(self.cell_size, np.float32)
]