ray/rllib/tuned_examples/pong-dqn.yaml
Eric Liang dd70720578
[rllib] Rename sample_batch_size => rollout_fragment_length (#7503)
* bulk rename

* deprecation warn

* update doc

* update fig

* line length

* rename

* make pytest comptaible

* fix test

* fi sys

* rename

* wip

* fix more

* lint

* update svg

* comments

* lint

* fix use of batch steps
2020-03-14 12:05:04 -07:00

22 lines
582 B
YAML

# You can expect ~20 reward within 1.1m timesteps / 2.1 hours on a K80 GPU
pong-deterministic-dqn:
env: PongDeterministic-v4
run: DQN
stop:
episode_reward_mean: 20
time_total_s: 7200
config:
num_gpus: 1
gamma: 0.99
lr: .0001
learning_starts: 10000
buffer_size: 50000
rollout_fragment_length: 4
train_batch_size: 32
exploration_config:
epsilon_timesteps: 200000
final_epsilon: .01
model:
grayscale: True
zero_mean: False
dim: 42