ray/doc/source/raysgd/raysgd.rst
2020-04-02 11:14:02 -07:00

67 lines
2.2 KiB
ReStructuredText

RaySGD: Distributed Training Wrappers
=====================================
.. _`issue on GitHub`: https://github.com/ray-project/ray/issues
RaySGD is a lightweight library for distributed deep learning, providing thin wrappers around PyTorch and TensorFlow native modules for data parallel training.
The main features are:
- **Ease of use**: Scale PyTorch's native ``DistributedDataParallel`` and TensorFlow's ``tf.distribute.MirroredStrategy`` without needing to monitor individual nodes.
- **Composability**: RaySGD is built on top of the Ray Actor API, enabling seamless integration with existing Ray applications such as RLlib, Tune, and Ray.Serve.
- **Scale up and down**: Start on single CPU. Scale up to multi-node, multi-CPU, or multi-GPU clusters by changing 2 lines of code.
.. note::
This API is new and may be revised in future Ray releases. If you encounter
any bugs, please file an `issue on GitHub`_.
.. important:: Join our `community slack <https://forms.gle/9TSdDYUgxYs8SA9e8>`_ to discuss Ray!
Getting Started
---------------
You can start a ``TorchTrainer`` with the following:
.. code-block:: python
import ray
from ray.util.sgd import TorchTrainer
from ray.util.sgd.torch.examples.train_example import LinearDataset
import torch
from torch.utils.data import DataLoader
def model_creator(config):
return torch.nn.Linear(1, 1)
def optimizer_creator(model, config):
"""Returns optimizer."""
return torch.optim.SGD(model.parameters(), lr=1e-2)
def data_creator(config):
train_loader = DataLoader(LinearDataset(2, 5), config["batch_size"])
val_loader = DataLoader(LinearDataset(2, 5), config["batch_size"])
return train_loader, val_loader
ray.init()
trainer1 = TorchTrainer(
model_creator=model_creator,
data_creator=data_creator,
optimizer_creator=optimizer_creator,
loss_creator=torch.nn.MSELoss,
num_workers=2,
use_gpu=False,
config={"batch_size": 64})
stats = trainer1.train()
print(stats)
trainer1.shutdown()
print("success!")
.. tip:: Get in touch with us if you're using or considering using `RaySGD <https://forms.gle/26EMwdahdgm7Lscy9>`_!