ray/release/ml_user_tests/xgboost/train_gpu_connect.py
Antoni Baum a8d7897a56
[CI] Modify remote wrapper in XGBoost-Ray client test (#20544)
Instead of wrapping the whole training run in a remote call, we only query the files on the node in a remote call. XGBoost-Ray is then started from the local node.
2021-11-24 10:27:17 +00:00

65 lines
1.6 KiB
Python

"""Small cluster training
This training run will start 4 workers on 4 nodes (including head node).
Test owner: krfricke
Acceptance criteria: Should run through and report final results.
"""
import json
import os
import time
import ray
if __name__ == "__main__":
os.environ["RXGB_PLACEMENT_GROUP_TIMEOUT_S"] = "1200"
addr = os.environ.get("RAY_ADDRESS")
job_name = os.environ.get("RAY_JOB_NAME", "train_gpu_connect")
runtime_env = {"env_vars": {"RXGB_PLACEMENT_GROUP_TIMEOUT_S": "1200"}}
if addr.startswith("anyscale://"):
ray.init(address=addr, job_name=job_name, runtime_env=runtime_env)
else:
ray.init(address="auto")
from xgboost_ray import RayParams
from ray.util.xgboost.release_test_util import train_ray, get_parquet_files
ray_params = RayParams(
elastic_training=False,
max_actor_restarts=2,
num_actors=4,
cpus_per_actor=4,
gpus_per_actor=1)
@ray.remote
def ray_get_parquet_files():
return get_parquet_files(
path="/data/classification.parquet",
num_files=25,
)
start = time.time()
train_ray(
path=ray.get(ray_get_parquet_files.remote()),
num_workers=4,
num_boost_rounds=100,
regression=False,
use_gpu=True,
ray_params=ray_params,
xgboost_params=None,
)
taken = time.time() - start
result = {
"time_taken": taken,
}
test_output_json = os.environ.get("TEST_OUTPUT_JSON",
"/tmp/train_gpu_connect.json")
with open(test_output_json, "wt") as f:
json.dump(result, f)
print("PASSED.")